高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

重离子治癌笔形束精确模型的研究进展

张晖 戴中颖 刘新国 陈卫强 李强

张晖, 戴中颖, 刘新国, 陈卫强, 李强. 重离子治癌笔形束精确模型的研究进展[J]. 原子核物理评论, 2018, 35(1): 85-93. doi: 10.11804/NuclPhysRev.35.01.085
引用本文: 张晖, 戴中颖, 刘新国, 陈卫强, 李强. 重离子治癌笔形束精确模型的研究进展[J]. 原子核物理评论, 2018, 35(1): 85-93. doi: 10.11804/NuclPhysRev.35.01.085
ZHANG Hui, DAI Zhongying, LIU Xinguo, CHEN Weiqiang, LI Qiang. Research Progress on Accurate Pencil Beam Model for Heavy Ion Cancer Therapy[J]. Nuclear Physics Review, 2018, 35(1): 85-93. doi: 10.11804/NuclPhysRev.35.01.085
Citation: ZHANG Hui, DAI Zhongying, LIU Xinguo, CHEN Weiqiang, LI Qiang. Research Progress on Accurate Pencil Beam Model for Heavy Ion Cancer Therapy[J]. Nuclear Physics Review, 2018, 35(1): 85-93. doi: 10.11804/NuclPhysRev.35.01.085

重离子治癌笔形束精确模型的研究进展

doi: 10.11804/NuclPhysRev.35.01.085
基金项目: 国家重点研发计划资助项目(2016YFC0904700);国家自然科学基金资助项目(11505249,11475231);国家科技支撑计划资助项目(2015BAI01B11)
详细信息
    作者简介:

    张晖(1991-),女(汉),山西五台人,博士研究生,加速器应用专业,从事重离子治疗技术基础研究;E-mail:zhanghui@impcas.ac.cn

    通讯作者: 李强,E-mail:liqiang@impcas.ac.cn。
  • 中图分类号: O571.53

Research Progress on Accurate Pencil Beam Model for Heavy Ion Cancer Therapy

Funds: National Key Research and Development Program of China (2016YFC0904700); National Natural Science Foundation of China (11505249, 11475231); National Key Technology Support Program of the Ministry of Science and Technology of China (2015BAI01B11)
  • 摘要: 中国科学院近代物理研究所(IMP)目前的重离子治疗计划系统是采用单一高斯模型来描述笔形束的横向剂量分布的,但是对重离子在介质中产生的次级粒子剂量贡献考虑不充分的单一高斯模型不足以描述真实的笔形束横向剂量分布。精确的笔形束模型还应该包含描述由次级粒子所产生的低剂量包络。本研究对笔形束精确模型中对离轴区域低剂量包络的成因、性质、剂量贡献、数学模型及低剂量包络探测方法的研究进展进行了综述,并基于武威重离子治疗中心医用重离子加速器示范装置(HIMM-WW)水平束治疗头的设备布局,利用Monte Carlo方法模拟计算了不同能量重离子笔形束的离轴剂量分布,探讨了模拟计算所得笔形束横向剂量分布与不同数学模型的符合程度。验证了已有文献中所提到的三重高斯模型能更好地描述笔形束的横向剂量分布这一结论。这些工作为下一步改进IMP重离子治疗计划系统中的重离子笔形束模型奠定了基础。


    The heavy ion treatment planning system of Institute of Modern Physics(IMP), Chinese Academy of Sciences adopts single Gaussian model to depict the lateral dose distribution of pencil beam currently. Without taking secondary particles produced by heavy-ion pencil beam in medium into full consideration, the single Gaussian model is not accurate enough to describe the lateral dose distribution. In fact, an accurate pencil beam model should include the description of low dose envelope contributed by secondary particles. This work summarized the cause of formation, property, dose contribution, mathematic models and measuring methods of the low dose envelope laterally far away from the incident axis of a pencil beam. Moreover, the lateral dose distribution of heavy ion pencil beams with different energies were calculated by means of the Monte Carlo simulation method, based on the horizontal nozzle of the demonstration facility of heavy ion medical machine in the Wuwei heavy-ion therapy center, and thus the degree of coincidence between the simulated data and different mathematic models was investigated. The results verified that the triple Gaussian model was better than the single and double Gaussian models to depict the lateral dose distribution of heavy ion pencil beams, mentioned from existing papers. Thus, this work provides a basis for further developing practical and accurate pencil beam model for heavy ion cancer therapy.
  • [1] XIAO G Q, ZHANG H, LI Q, et al. Nuclear Physics Review, 2007, 24(2):85. (in Chinese) (肖国青, 张红, 李强, 等. 原子核物理评论, 2007, 24(2):85.)
    [2] LI Q, LIU X G, DAI Z Y, et al. AIP Conf Proc, 2013, 1533(1):174.
    [3] KADERKA R, SCHARDT D, DURANTE M, et al. Physics in Medicine and Biology, 2012, 57(16):5059.
    [4] LIU X G. Study on the Treatment Planning System and Its Related Issues within the Framework of the HIRFL Passive Beam Delivery System[D]. Graduate University of the Chinese Academy of Sciences, 2010. (in Chinese) (刘新国. 基于HIRFL被动式束流配送系统的重离子治疗计划系统及相关问题研究[D]. 中国科学院研究生院, 2010.)
    [5] SCHWAAB J, BRONS S, FIERES J, et al. Physics in Medicine and Biology, 2011, 56(24):7813.
    [6] PARODI K, MAIRANI A, SOMMERER F. Journal of Radiation Research, 2013, 54(suppl 1):i91.
    [7] INANIWA T, FURUKAWA T, NAGANO A, et al. Medical Physics, 2009, 36(7):2889.
    [8] KUSANO Y, KANAI T, KASE Y, et al. Medical Physics, 2007, 34(1):193.
    [9] KUSANO Y, KANAI T, YONAI S,et al. Medical Physics, 2007, 34(10):4016.
    [10] PEDRONI E, SCHEIB S, BOHRINGER T, et al. Physics in Medicine and Biology, 2005, 50(3):541.
    [11] SAWAKUCHI G O, TITT U, MIRKOVIC D, et al. Physics in Medicine and Biology, 2010, 55(3):711.
    [12] SAWAKUCHI G O, ZHU X R, POENISCH F, et al. Physics in Medicine and Biology, 2010, 55(12):3467.
    [13] LI Y, ZHU R X, SAHOO N, et al. Physics in Medicine and Biology, 2012, 57(4):983.
    [14] BELLINZONA E V, CIOCCA M, EMBRIACO A, et al. Physics in Medicine and Biology, 2016, 61(4):N102.
    [15] HIRAYAMA S, TAKAYANAGI T, FUJⅡ Y, et al. Medical Physics, 2016, 43(3):1437.
    [16] DAI Z Y. Study on the Spot Scanning Technique and Relevant Clinic Dosimetry Issues of Heavy Ions within the Framework of the Active Beam Delivery System at HIRFLCSR[D]. Graduate University of the Chinese Academy of Sciences,2012(戴中颖. 重离子三维点扫描技术及相关重离子剂量学研究[D]. 中国科学院研究生院, 2012.)
    [17] HARA Y, FURUKAWA T, INANIWA T, et al. Medical Physics, 2014, 41(2):021706.
    [18] LIN L, AINSLEY C G, MERTENS T, et al. Physics in Medicine and Biology, 2013, 58(12):N171.
    [19] ARIGA A, ARIGA T, BRACCINI S, et al. Journal of Instrumentation, 2015, 10(01):P01007.
    [20] INANIWA T, KANEMATSU N, HARA Y, et al. Physics in Medicine& Biology, 2014, 59(18):5361.
    [21] MAIRANI A, BOHLEN T T, SCHIAVI A, et al. Physics in Medicine & Biology, 2012, 58(8):2471.
    [22] ULMER W, SCHAFFNER B. Radiation Physics & Chemistry, 2011, 80(3):378.
    [23] JAN S, BENOIT D, BECHEVA E, et al. Physics in Mdicine and Biology, 2011, 56(4):881.
    [24] GREVILLOT L, BERTRAND D, DESSY F, et al. Physics in Medicine and Biology, 2012, 57(13):4223.
    [25] SARRUT D, BARDIES M, BOUSSION N, et al. Medical Physics, 2014, 41(6):064301.
    [26] YANG J C, SHI J, CHAI W P, et al. Nucl Instr Meth A, 2014, 756:19.
  • 加载中
计量
  • 文章访问数:  1005
  • HTML全文浏览量:  86
  • PDF下载量:  221
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-12
  • 修回日期:  2017-05-28
  • 刊出日期:  2018-03-20

重离子治癌笔形束精确模型的研究进展

doi: 10.11804/NuclPhysRev.35.01.085
    基金项目:  国家重点研发计划资助项目(2016YFC0904700);国家自然科学基金资助项目(11505249,11475231);国家科技支撑计划资助项目(2015BAI01B11)
    作者简介:

    张晖(1991-),女(汉),山西五台人,博士研究生,加速器应用专业,从事重离子治疗技术基础研究;E-mail:zhanghui@impcas.ac.cn

    通讯作者: 李强,E-mail:liqiang@impcas.ac.cn。
  • 中图分类号: O571.53

摘要: 中国科学院近代物理研究所(IMP)目前的重离子治疗计划系统是采用单一高斯模型来描述笔形束的横向剂量分布的,但是对重离子在介质中产生的次级粒子剂量贡献考虑不充分的单一高斯模型不足以描述真实的笔形束横向剂量分布。精确的笔形束模型还应该包含描述由次级粒子所产生的低剂量包络。本研究对笔形束精确模型中对离轴区域低剂量包络的成因、性质、剂量贡献、数学模型及低剂量包络探测方法的研究进展进行了综述,并基于武威重离子治疗中心医用重离子加速器示范装置(HIMM-WW)水平束治疗头的设备布局,利用Monte Carlo方法模拟计算了不同能量重离子笔形束的离轴剂量分布,探讨了模拟计算所得笔形束横向剂量分布与不同数学模型的符合程度。验证了已有文献中所提到的三重高斯模型能更好地描述笔形束的横向剂量分布这一结论。这些工作为下一步改进IMP重离子治疗计划系统中的重离子笔形束模型奠定了基础。


The heavy ion treatment planning system of Institute of Modern Physics(IMP), Chinese Academy of Sciences adopts single Gaussian model to depict the lateral dose distribution of pencil beam currently. Without taking secondary particles produced by heavy-ion pencil beam in medium into full consideration, the single Gaussian model is not accurate enough to describe the lateral dose distribution. In fact, an accurate pencil beam model should include the description of low dose envelope contributed by secondary particles. This work summarized the cause of formation, property, dose contribution, mathematic models and measuring methods of the low dose envelope laterally far away from the incident axis of a pencil beam. Moreover, the lateral dose distribution of heavy ion pencil beams with different energies were calculated by means of the Monte Carlo simulation method, based on the horizontal nozzle of the demonstration facility of heavy ion medical machine in the Wuwei heavy-ion therapy center, and thus the degree of coincidence between the simulated data and different mathematic models was investigated. The results verified that the triple Gaussian model was better than the single and double Gaussian models to depict the lateral dose distribution of heavy ion pencil beams, mentioned from existing papers. Thus, this work provides a basis for further developing practical and accurate pencil beam model for heavy ion cancer therapy.

English Abstract

张晖, 戴中颖, 刘新国, 陈卫强, 李强. 重离子治癌笔形束精确模型的研究进展[J]. 原子核物理评论, 2018, 35(1): 85-93. doi: 10.11804/NuclPhysRev.35.01.085
引用本文: 张晖, 戴中颖, 刘新国, 陈卫强, 李强. 重离子治癌笔形束精确模型的研究进展[J]. 原子核物理评论, 2018, 35(1): 85-93. doi: 10.11804/NuclPhysRev.35.01.085
ZHANG Hui, DAI Zhongying, LIU Xinguo, CHEN Weiqiang, LI Qiang. Research Progress on Accurate Pencil Beam Model for Heavy Ion Cancer Therapy[J]. Nuclear Physics Review, 2018, 35(1): 85-93. doi: 10.11804/NuclPhysRev.35.01.085
Citation: ZHANG Hui, DAI Zhongying, LIU Xinguo, CHEN Weiqiang, LI Qiang. Research Progress on Accurate Pencil Beam Model for Heavy Ion Cancer Therapy[J]. Nuclear Physics Review, 2018, 35(1): 85-93. doi: 10.11804/NuclPhysRev.35.01.085
参考文献 (26)

目录

    /

    返回文章
    返回