高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于折叠势的两势方法系统研究质子放射性(英文)

陈玖龙 程俊皓 邓军刚 李小华

陈玖龙, 程俊皓, 邓军刚, 李小华. 基于折叠势的两势方法系统研究质子放射性(英文)[J]. 原子核物理评论, 2018, 35(3): 257-263. doi: 10.11804/NuclPhysRev.35.03.257
引用本文: 陈玖龙, 程俊皓, 邓军刚, 李小华. 基于折叠势的两势方法系统研究质子放射性(英文)[J]. 原子核物理评论, 2018, 35(3): 257-263. doi: 10.11804/NuclPhysRev.35.03.257
CHEN Jiulong, CHENG Junhao, DENG Jungang, LI Xiaohua. Systematic Study of Proton Radioactivity Based on Two-potential Approach with Folding Potentials[J]. Nuclear Physics Review, 2018, 35(3): 257-263. doi: 10.11804/NuclPhysRev.35.03.257
Citation: CHEN Jiulong, CHENG Junhao, DENG Jungang, LI Xiaohua. Systematic Study of Proton Radioactivity Based on Two-potential Approach with Folding Potentials[J]. Nuclear Physics Review, 2018, 35(3): 257-263. doi: 10.11804/NuclPhysRev.35.03.257

基于折叠势的两势方法系统研究质子放射性(英文)

doi: 10.11804/NuclPhysRev.35.03.257
基金项目: 国家自然科学基金资助项目(11205083,11505100);湖南省重点学科(核科学与技术),湖南省教育厅重点项目(15A159);湖南省自然科学基金资助项目(2015JJ3103,2015JJ2121);南华大学粒子物理与原子核物理创新团队;山东省自然科学基金项目(ZR2015AQ007)
详细信息
  • 中图分类号: O571.3

Systematic Study of Proton Radioactivity Based on Two-potential Approach with Folding Potentials

Funds: National Natural Science Foundation of China (11205083, 11505100); Construct Program of the Key Discipline in Hunan Province, Research Foundation of Education Bureau of Hunan Province, China (15A159); Natural Science Foundation of Hunan Province, China (2015JJ3103, 2015JJ2121); Innovation Group of Nuclear and Particle Physics in USC; Shandong Province Natural Science Foundation, China (ZR2015AQ007)
  • 摘要: 基于两势方法系统地研究了质子数51 ≤ Z ≤ 83质子放射性核素的衰变半衰期。总的质子-子核相互作用势包括:通过单折叠子核密度和DDM3Y有效相互作用得到的微观核势,通过单折叠子核电荷密度和质子-质子库仑相互作用得到的真实库仑势以及离心势。同时,预测了同一区域16个核的质子放射性半衰期,并且预测的质子放射性半衰期在4.11倍的范围内。此外,还研究了质子放射性的Geiger-Nuttall定律。结果表明,Geiger-Nuttall定律可以用来描述角动量相同的同位素的质子放射性。


    In the present work, we systematically study the half-lives of proton radioactivity for 51 ≤ Z ≤ 83 nuclei within the two-potential approach. The total emitted proton-daughter nucleus interaction potential is composed of the microscopic nuclear potential obtained by single folding the density of the daughter nucleus with the DDM3Y effective interaction, the realistic Coulomb potential obtained by single folding the charge density of the daughter nucleus with the proton-proton Coulomb interaction and the centrifugal potential. We extend our study to predict proton radioactivity half-lives of 16 nuclei in the same region within a factor of 4.11. In addition, the Geiger-Nuttall law for proton radioactivity is researched. The results indicate that the Geiger-Nuttall law can be used to describe the proton radioactivity isotopes with same angular momentum.
  • [1] JACKSON K P, CARDINAL C U, EVANS H C, et al. Phys Lett B, 1970, 33:281.
    [2] CERNY J, ESTERL J, GOUGH R A, et al. Phys Lett B, 1970, 33:284.
    [3] HOFMANN S, REISDORF W, MÜNZENBERG, et al. Z Phys A, 1982, 305:111.
    [4] KLEPPER O, BATSCH T, HOFMANN S, et al. Z Phys A, 1982, 305:125.
    [5] BUCK B, MERCHANT A C. Phys Rev C, 1992, 45:1688.
    [6] BLANK B, BORGE M J G. Prog Part Nucl phys, 2008, 60:403.
    [7] THOENNESSEN M. Nuclear Physics Review, 2016, 33(2):117.
    [8] KARNY M, RYKACZEWSKI K P, CRZYWACZ R K, et al. Phys Lett B, 2008, 664:56.
    [9] BASU D N, ROY CHOWDHURY P, SAMANTA C. Phys Rev C, 2005, 72:051601(R).
    [10] ROY CHOWDHURY P, SAMANTA C, BASU D N. At Data Nucl Data Tables, 2008, 94:781.
    [11] BHATTACHARYA M, GANGOPADHYAY G. Phys Lett B, 2007, 651:263.
    [12] BALASUBRAMANIAM M, ARUNACHALAM N. Phys Rev C, 2005, 71:014603.
    [13] DUARTE S B, TAVARES O A P, GUZMÁN G, et al. At Data Nucl Data Tables, 2002, 80:235.
    [14] DONG J M, ZHANG H F, ROYER G. Phys Rev C, 2009, 79:054330.
    [15] ZHANG H F, WANG Y J, DONG J M, et al. J Phys G:Nucl Part Phys, 2010, 37:085107.
    [16] ZHANG Hongfei. Nucl Phys Rev, 2016, 33(2):167.
    [17] GURVITZ S A, SEMMES P B, NAZAREWICZ W, et al. Phys Rev A, 2004, 69:042705.
    [18] GURVITZ S A, KALBERMANN G. Phys Rev Lett, 1987, 59:262.
    [19] SUN X D, DENG J G, XIANG D, et al. Phys Rev C, 2016, 93:034316.
    [20] SUN X D, GUO P, LI X H. Phys Rev C, 2016, 94:024338.
    [21] SUN X D, WU X J, ZHENG B, et al. Chin Phys C, 2017, 41:014102.
    [22] SUN X D, DENG J G, XIANG D, et al. Phys Rev C, 2017, 95:044303.
    [23] SUN X D, DUAN C, DENG J G, et al. Phys Rev C, 2017, 95:014319.
    [24] DENG J G, CHENG J H, ZHENG B, et al. Chin Phys C, 2017, 41:124109.
    [25] DENG J G, ZHAO J G, XIANG D, et al. Phys Rev C, 2017, 96:024318.
    [26] DENG J G, ZHAO J G, CHEN J L, et al. Chin Phys C, 2018, 42:044102.
    [27] BERTSCH G, BORYSOWICZ J, MCMANUS H, et al. Nucl Phys A, 1977, 284:399.
    [28] SATCHLER G R, LOVE W G. Phys Rep, 1979, 55:183.
    [29] KOBOS A M, BROWN B A, HODGSON P E, et al. Nucl Phys A, 1982, 384:65.
    [30] HAHN B, RAVENHALL D G, HOFSTADTER R. Phys Rev, 1956, 101:1131.
    [31] GUPTA D, BASU D N. Nucl Phys A, 2005, 748:402.
    [32] MADHUBRATA BHATTACHARYA, GANGOPADHYAY G. Phys lett B, 2007, 651:263.
    [33] CHAUDHURI A M, BROWN B A, LINDSAY R, et al. Nucl Phys A, 1984, 425:205.
    [34] BASU D N. J Phys G:Nucl Part Phys, 2004, 30:B7.
    [35] MOREHEAD J J. J Math Phys, 1995, 36:5431.
    [36] AUDI G, KONDEV F, WANG M, et al. Chin Phys C, 2017, 41:030001.
    [37] HUANG W J, AUDI G, WANG M, et al. Chin Phys C, 2017, 41:030002.
    [38] WANG M, AUDI G, KONDEV F, et al. Chin Phys C, 2017, 41:030003.
    [39] BUDACA R, BUDACA A I. Eur Phys J A, 2017, 53:160.
    [40] QIAN Y B, REN Z. Eur Phys J A, 2016, 52:68.
    [41] RAJESWARI N S, BALASUBRAMANIAM M. Eur Phys J A, 2014, 50:105.
    [42] WANG Y Z, GU J Z. Phys Rev C, 2017, 95:014302.
    [43] WANG J M, ZHANG H F, LI J Q. J Phys G:Nucl Part Phys, 2014, 41:065102.
    [44] GEIGER H, NUTTALL J M. Phylos Mag, 1911, 22:613.
    [45] ZDEB A, WARDA M, POMORSKI K. Phys Rev C, 2013, 87:024308.
    [46] ZDEB A, WARDA M, PETRACHE C M, POMORSKI K. Eur Phys J A, 2016, 52:323.
  • 加载中
计量
  • 文章访问数:  1276
  • HTML全文浏览量:  100
  • PDF下载量:  144
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-13
  • 修回日期:  2018-06-30
  • 刊出日期:  2018-09-20

基于折叠势的两势方法系统研究质子放射性(英文)

doi: 10.11804/NuclPhysRev.35.03.257
    基金项目:  国家自然科学基金资助项目(11205083,11505100);湖南省重点学科(核科学与技术),湖南省教育厅重点项目(15A159);湖南省自然科学基金资助项目(2015JJ3103,2015JJ2121);南华大学粒子物理与原子核物理创新团队;山东省自然科学基金项目(ZR2015AQ007)
  • 中图分类号: O571.3

摘要: 基于两势方法系统地研究了质子数51 ≤ Z ≤ 83质子放射性核素的衰变半衰期。总的质子-子核相互作用势包括:通过单折叠子核密度和DDM3Y有效相互作用得到的微观核势,通过单折叠子核电荷密度和质子-质子库仑相互作用得到的真实库仑势以及离心势。同时,预测了同一区域16个核的质子放射性半衰期,并且预测的质子放射性半衰期在4.11倍的范围内。此外,还研究了质子放射性的Geiger-Nuttall定律。结果表明,Geiger-Nuttall定律可以用来描述角动量相同的同位素的质子放射性。


In the present work, we systematically study the half-lives of proton radioactivity for 51 ≤ Z ≤ 83 nuclei within the two-potential approach. The total emitted proton-daughter nucleus interaction potential is composed of the microscopic nuclear potential obtained by single folding the density of the daughter nucleus with the DDM3Y effective interaction, the realistic Coulomb potential obtained by single folding the charge density of the daughter nucleus with the proton-proton Coulomb interaction and the centrifugal potential. We extend our study to predict proton radioactivity half-lives of 16 nuclei in the same region within a factor of 4.11. In addition, the Geiger-Nuttall law for proton radioactivity is researched. The results indicate that the Geiger-Nuttall law can be used to describe the proton radioactivity isotopes with same angular momentum.

English Abstract

陈玖龙, 程俊皓, 邓军刚, 李小华. 基于折叠势的两势方法系统研究质子放射性(英文)[J]. 原子核物理评论, 2018, 35(3): 257-263. doi: 10.11804/NuclPhysRev.35.03.257
引用本文: 陈玖龙, 程俊皓, 邓军刚, 李小华. 基于折叠势的两势方法系统研究质子放射性(英文)[J]. 原子核物理评论, 2018, 35(3): 257-263. doi: 10.11804/NuclPhysRev.35.03.257
CHEN Jiulong, CHENG Junhao, DENG Jungang, LI Xiaohua. Systematic Study of Proton Radioactivity Based on Two-potential Approach with Folding Potentials[J]. Nuclear Physics Review, 2018, 35(3): 257-263. doi: 10.11804/NuclPhysRev.35.03.257
Citation: CHEN Jiulong, CHENG Junhao, DENG Jungang, LI Xiaohua. Systematic Study of Proton Radioactivity Based on Two-potential Approach with Folding Potentials[J]. Nuclear Physics Review, 2018, 35(3): 257-263. doi: 10.11804/NuclPhysRev.35.03.257
参考文献 (46)

目录

    /

    返回文章
    返回