高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中重核中单粒子与集体运动的竞争效应(英文)

亓冲

亓冲. 中重核中单粒子与集体运动的竞争效应(英文)[J]. 原子核物理评论, 2018, 35(4): 420-428. doi: 10.11804/NuclPhysRev.35.04.420
引用本文: 亓冲. 中重核中单粒子与集体运动的竞争效应(英文)[J]. 原子核物理评论, 2018, 35(4): 420-428. doi: 10.11804/NuclPhysRev.35.04.420
QI Chong. Competition Between the Single-particle Seniority Regime and Collective Motion in Intermediate-mass Nuclei[J]. Nuclear Physics Review, 2018, 35(4): 420-428. doi: 10.11804/NuclPhysRev.35.04.420
Citation: QI Chong. Competition Between the Single-particle Seniority Regime and Collective Motion in Intermediate-mass Nuclei[J]. Nuclear Physics Review, 2018, 35(4): 420-428. doi: 10.11804/NuclPhysRev.35.04.420

中重核中单粒子与集体运动的竞争效应(英文)

doi: 10.11804/NuclPhysRev.35.04.420
基金项目: 瑞典研究理事会项目(621-2012-3805,621-2013-4323);Göran Gustafsson基金杰出青年项目
详细信息
  • 中图分类号: O571.6;P142.9

Competition Between the Single-particle Seniority Regime and Collective Motion in Intermediate-mass Nuclei

Funds: Swedish Research Council (VR) (621-2012-3805, 621-2013-4323) and Göran Gustafsson Foundation.
  • 摘要: 从原子核的电四极跃迁强度B(E2)中可以提取出原子核集体性和单粒子性质竞争的重要信息,其中一个重要的观测量是B(E2;41+ →21+)/B(E2;21+g.s.)的比值(B4/2)。B4/2一般要大于1,而且对于原子核转动和振动,我们应有B4/2=1.4和2.0,但球形半满壳核一般会有不一样的性质。这些核的性质主要受对关联效应影响。介绍了几种超出我们一般认识的奇特衰变性质。Te同位素的基态带有鲜明的振动特性,但114Te的E2跃迁性质却更符合转动性。这些性质可以通过大规模壳模型计算来描述。对于填充j=9/2轨道的半满壳核,它们的4+和6+显示出很强的辛若数部分守恒性质。这种奇特的部分守恒可以被解析证明。而且我们的计算表明辛若数部分守恒对相关的E2跃迁影响很大。对于N=90附近具有量子相变行为的核素,其B4/2也会也表现出相似的奇异特性。


    The E2 transition strength, B(E2), gives particularly precise information on the competition between the collective and single-particle degree of freedom. An important observable to study the development of collectivity is the B(E2; 41+ →21+)/B(E2; 21+g.s.) (B4/2). The B4/2 ratio is usually greater than unity. These values are 1.4 and 2.0 for an ideal rotor and a vibrator, respectively. Whereas the seniority scheme usually leads to different behaviours. In this contribution I will show examples that contrast with our standard understanding. The yrast spectra of Te isotopes show a vibrational-like equally-spaced pattern but the few known E2 transitions show anomalous rotational-like behaviour, which cannot be reproduced by collective models. Large-scale shell model calculations reproduce well the equally-spaced spectra of those isotopes as well as the constant behaviour of the B(E2) values in 114Te. For nuclei involving protons or neutrons in j=9/2 orbitals, the partial conservation of seniority can lead to dramatic changes to the E2 decay pattern that have never been seen before. The B4/2 ratios in quantum phase transitional nuclei around N=90 also show a similar exotic feature.
  • [1] MÖLLER O, WARR N, JOLIE J, et al. Phys Rev C, 2005, 71:064324.
    [2] CAKIRLI R B, CASTEN R F, JOLIE J, et al. Phys Rev C, 2004, 70:047302.
    [3] BÄCK T, QI C, CEDERWALL B, et al. Phys Rev C, 2013, 87:031306.
    [4] XU Z X, QI C. Phys Lett B, 2013, 724:247.
    [5] JIAO L F, SUN Z H, XU Z X, et al. Phys Rev C, 2014, 90:024306.
    [6] QI C, JIA L Y, FU G J. Phys Rev C, 2016, 94:014312.
    [7] QI C. Journal of Physics:Conference Series, 2016, 742:012030.
    [8] ANDREYEV A N. Phys Rev Lett, 2013, 110:242502.
    [9] QI C, ANDREYEV A N, HUYSE M, et al. Phys Lett B, 2014, 734:203.
    [10] WANG F, SUN B H, LIU Z, et al. Phys Rev C, 2017, 96:064307.
    [11] WANG F. Phys Lett B, 2017, 770:83.
    [12] TALMI I. Simple Models of Complex Nuclei:The Shell Model and Interacting Boson Model[M]. Amsterdam:Harwood Academic Publishers, 1993.
    [13] VAN ISACKER P, HEINZE S. Annals of Physics, 2014, 349:73
    [14] QI C. Phys Rev C, 2010, 81, 034318.
    [15] ROWE D J, ROSENSTEEL G. Phys Rev Lett, 2001, 87:172501.
    [16] ROSENSTEEL G, ROWE D J. Phys Rev C, 2003, 67:014303.
    [17] QI C, WANG X B, XU Z X, et al. Phys Rev C, 2010, 82:014304.
    [18] ESCUDEROS A, ZAMICK L. Phys Rev C, 2006, 73:044302.
    [19] VAN ISACKER P. Nuclear Physics News, 2014, 24:23.
    [20] ZAMICK L. Phys Rev C, 2007, 75:064305.
    [21] QI C, XU Z X, LIOTTA R J. Nucl Phys A, 2012, 884:21.
    [22] VAN ISACKER P, HEINZE S. Phys Rev Lett, 2008, 100:052501.
    [23] QI C. Phys Rev C, 2011, 83:014307.
    [24] LEVIATAN A. Prog Part Nucl Phys, 2011, 66:93.
    [25] VAN ISACKER P. Int J Mod Phys E, 2011, 20:191.
    [26] MORALES A I. Phys Rev C, 2016, 93:034328.
    [27] WATANABE H. Phys Rev Lett, 2013, 111:152501.
    [28] SIMPSON G S. Phys Rev Lett, 2014, 113:132502.
    [29] GOTTARDO A. Phys Rev Lett, 2012, 109:162502.
    [30] QIAN Y B. QI C. Phys Rev C, 2018, 98:061303.
    [31] QI C. Phys Lett B, 2017, 773:616.
    [32] HONMA M, OTSUKA T, MIZUSAKI T, et al. Phys Rev C, 2009, 80:064323.
    [33] LISETSKIY A F, BROWN B A, HOROI M, et al. Phys Rev C, 2004, 70:044314.
    [34] BLOMQVIST J, RYDSTRÖM L. Physica Scripta, 1985, 31:31.
    [35] QI C. Phys Lett B, 2012, 717:436.
    [36] JIA L Y, QI C. Phys Rev C, 2016, 94:044312.
    [37] QI C, CHEN T. Phys Rev C, 2015, 92:051304.
    [38] CHANGIZI S, QI C, WYSS R. Nucl Phys A, 2015, 940:210.
    [39] XU Z X, QI C, BLOMQVIST J, et al. Nucl Phys A, 2012, 877:51.
    [40] JIANG H, QI C, LEI Y, et al. Phys Rev C, 2013, 88:044332.
    [41] BANU A. Phys Rev C, 2005, 72:061305.
    [42] CORSI A. Phys Lett B, 2015, 743:451.
    [43] CEDERKÄLL J. Phys Rev Lett, 2007, 98:172501.
    [44] CERIZZA G. Phys Rev C, 2016, 93:021601.
    [45] EKSTRÖM A. Phys Rev Lett, 2008, 101:012502.
    [46] DOORNENBAL P. Phys Rev C, 2014, 90:061302.
    [47] JUNGCLAUS A. Phys Lett B, 2011, 695:110.
    [48] GUASTALLA G. Phys Rev Lett, 2013, 110:172501.
    [49] ALLMOND J. M. Phys Rev C, 2015, 92:041303
    [50] SPIEKER M. Phys Lett B, 2016, 752:102.
    [51] PELLEGRI L. Phys Rev C, 2015, 92:014330.
    [52] FAESTERMANN T, GORSKA M, GRAWE H. Prog Part Nucl Phys, 2013, 69:85.
    [53] ANSARI A, RING P. Phys Lett B, 2007, 649:128.
    [54] LO IUDICE N, STOYANOV C., TARPANOV D. Phys Rev C, 2011, 84:044314.
    [55] MORALES I O, VAN ISACKER P, TALMI I. Phys Lett B, 2011, 703:606.
    [56] JIANG H, LEI Y, QI C, et al. Phys Rev C, 2014, 89:014320.
    [57] JIANG H, LEI Y, FU G J, et al. Phys Rev C, 2012, 86:054304.
    [58] CORAGGIO L, COVELLO A, GARGANO A, et al. Phys Rev C, 2015, 91:041301.
    [59] ENGELAND T, HJORTH-JENSEN M, KARTAMYSHEV M, et al. Nucl Phys A, 2014, 928:51.
    [60] QI C, XU Z X. Phys Rev C, 2012, 86:044323.
    [61] SAXENA M. Phys Rev C, 2014, 90:024316.
    [62] HADINIA B. Phys Rev C, 2004, 70:031302
    [63] HADINIA B. Phys Rev C, 2005, 72:041303.
    [64] SANDZELIUS M. Phys Rev Lett, 2007, 99:022501.
    [65] DELION D S, WYSS R, LIOTTA R J, et al. Phys Rev C, 2010, 82:024307.
    [66] SEWERYNIAK D. Phys Rev C, 2006, 73:061301.
    [67] LIDDICK S N. Phys Rev Lett, 2006, 97:082501.
    [68] CEDERWALL B. Nature, 2011, 469:68.
    [69] FRAUENDORF S, MACCHIAVELLI A. Prog Part Nucl Phys, 2014, 78:24.
    [70] QI C, BLOMQVIST J, BÄCK T, et al. Phys Rev C, 2011, 84:021301.
    [71] QI C, WYSS R. Physica Scripta, 2016, 91:013009.
    [72] BÄCK T. Phys Rev C, 2011, 84:041306.
    [73] DONCEL M. Phys Rev C, 2015, 91:061304.
    [74] HINKE C B, BÖHMER M, BOUTACHKOV P, et al. Nature, 2012, 486:341.
    [75] CAURIER E, NOWACKI F, POVES A, et al. Phys Rev C, 2010, 82:064304.
    [76] WU Z Y, QI C, WYSS R, et al. Phys Rev C, 2015, 92:024306.
    [77] COELLO PÉREZ E A, PAPENBROCK T. Phys Rev C, 2015, 92:064309.
    [78] DOMBRÁDI Z. Phys Rev C, 1995, 51:2394.
    [79] DONCEL M. Phys Rev C, 2017, 95:044321.
    [80] QI C. Phys Rev C, 2016, 94:034310.
    [81] DONCEL M, BÄCK T, QI C, et al. Phys Rev C, 2017, 96:051304.
    [82] PROCTER M G. Phys Lett B, 2011, 704:118.
    [83] PROCTER M G. Phys Rev C, 2012, 86:034308.
    [84] CEDERWALL B, DONCEL M, AKTAS O, et al. Phys Rev Lett, 2018, 121:022502.
    [85] GRAHN T. Phys Rev C, 2016, 94:044327.
    [86] CARROLL R J. Phys Rev C, 2016, 94:064311.
  • 加载中
计量
  • 文章访问数:  952
  • HTML全文浏览量:  79
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-18
  • 刊出日期:  2020-05-03

中重核中单粒子与集体运动的竞争效应(英文)

doi: 10.11804/NuclPhysRev.35.04.420
    基金项目:  瑞典研究理事会项目(621-2012-3805,621-2013-4323);Göran Gustafsson基金杰出青年项目
  • 中图分类号: O571.6;P142.9

摘要: 从原子核的电四极跃迁强度B(E2)中可以提取出原子核集体性和单粒子性质竞争的重要信息,其中一个重要的观测量是B(E2;41+ →21+)/B(E2;21+g.s.)的比值(B4/2)。B4/2一般要大于1,而且对于原子核转动和振动,我们应有B4/2=1.4和2.0,但球形半满壳核一般会有不一样的性质。这些核的性质主要受对关联效应影响。介绍了几种超出我们一般认识的奇特衰变性质。Te同位素的基态带有鲜明的振动特性,但114Te的E2跃迁性质却更符合转动性。这些性质可以通过大规模壳模型计算来描述。对于填充j=9/2轨道的半满壳核,它们的4+和6+显示出很强的辛若数部分守恒性质。这种奇特的部分守恒可以被解析证明。而且我们的计算表明辛若数部分守恒对相关的E2跃迁影响很大。对于N=90附近具有量子相变行为的核素,其B4/2也会也表现出相似的奇异特性。


The E2 transition strength, B(E2), gives particularly precise information on the competition between the collective and single-particle degree of freedom. An important observable to study the development of collectivity is the B(E2; 41+ →21+)/B(E2; 21+g.s.) (B4/2). The B4/2 ratio is usually greater than unity. These values are 1.4 and 2.0 for an ideal rotor and a vibrator, respectively. Whereas the seniority scheme usually leads to different behaviours. In this contribution I will show examples that contrast with our standard understanding. The yrast spectra of Te isotopes show a vibrational-like equally-spaced pattern but the few known E2 transitions show anomalous rotational-like behaviour, which cannot be reproduced by collective models. Large-scale shell model calculations reproduce well the equally-spaced spectra of those isotopes as well as the constant behaviour of the B(E2) values in 114Te. For nuclei involving protons or neutrons in j=9/2 orbitals, the partial conservation of seniority can lead to dramatic changes to the E2 decay pattern that have never been seen before. The B4/2 ratios in quantum phase transitional nuclei around N=90 also show a similar exotic feature.

English Abstract

亓冲. 中重核中单粒子与集体运动的竞争效应(英文)[J]. 原子核物理评论, 2018, 35(4): 420-428. doi: 10.11804/NuclPhysRev.35.04.420
引用本文: 亓冲. 中重核中单粒子与集体运动的竞争效应(英文)[J]. 原子核物理评论, 2018, 35(4): 420-428. doi: 10.11804/NuclPhysRev.35.04.420
QI Chong. Competition Between the Single-particle Seniority Regime and Collective Motion in Intermediate-mass Nuclei[J]. Nuclear Physics Review, 2018, 35(4): 420-428. doi: 10.11804/NuclPhysRev.35.04.420
Citation: QI Chong. Competition Between the Single-particle Seniority Regime and Collective Motion in Intermediate-mass Nuclei[J]. Nuclear Physics Review, 2018, 35(4): 420-428. doi: 10.11804/NuclPhysRev.35.04.420
参考文献 (86)

目录

    /

    返回文章
    返回