高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

曲率能对热力学驱动力的影响

朱巧迪 迟萌 李京珂 李佳阳 毛英臣

朱巧迪, 迟萌, 李京珂, 李佳阳, 毛英臣. 曲率能对热力学驱动力的影响[J]. 原子核物理评论, 2018, 35(4): 555-560. doi: 10.11804/NuclPhysRev.35.04.555
引用本文: 朱巧迪, 迟萌, 李京珂, 李佳阳, 毛英臣. 曲率能对热力学驱动力的影响[J]. 原子核物理评论, 2018, 35(4): 555-560. doi: 10.11804/NuclPhysRev.35.04.555
ZHU Qiaodi, CHI Meng, LI Jingke, LI Jiayang, MAO Yingchen. Influence of Curvature Energy on Thermodynamic Driving Force[J]. Nuclear Physics Review, 2018, 35(4): 555-560. doi: 10.11804/NuclPhysRev.35.04.555
Citation: ZHU Qiaodi, CHI Meng, LI Jingke, LI Jiayang, MAO Yingchen. Influence of Curvature Energy on Thermodynamic Driving Force[J]. Nuclear Physics Review, 2018, 35(4): 555-560. doi: 10.11804/NuclPhysRev.35.04.555

曲率能对热力学驱动力的影响

doi: 10.11804/NuclPhysRev.35.04.555
基金项目: 国家自然科学基金资助项目(11447019,11505724,11375080)
详细信息
    作者简介:

    朱巧迪(1993-),女,辽宁鞍山人,硕士研究生,从事原子核物理研究;E-mail:qiaodizhu2018@163.com

    通讯作者: 毛英臣,E-mail:myc@lnnu.edu.cn
  • 中图分类号: O571.53

Influence of Curvature Energy on Thermodynamic Driving Force

Funds: National Natural Science Foundation of China (11447019, 11505724, 11375080)
  • 摘要: 为了研究曲率能对核裂变热力学驱动力(TDF)的影响,首先利用包含曲率能的截断版小液滴模型计算了200Pb和224Th的位垒和熵垒,对比液滴模型的计算结果表明:曲率能未改变224Th的位垒鞍点,却将200Pb的位垒鞍点向后推移。能级密度参数的形变关系越强则两系统的熵垒鞍点越靠近基态。为了进一步探究曲率能如何通过位势和熵势影响TDF,以断前中子多重性(PNM)为探针,通过两种方案进行了模拟,结果表明:曲率能降低了两系统的位势驱动力,而增强了其熵势驱动力。结合PNM的计算表明,前一种效应要比后一种效应明显,因此曲率能总体减弱了200Pb和224Th的TDF,进而延缓了两系统的核裂变进程。


    In order to study the effect of curvature energy on the thermodynamic driving force (TDF) of nuclear fission, the potential and entropy barrier of 200Pb and 224Th systems are calculated by using the truncated droplet model including curvature energy, respectively. Compared with the liquid drop model, the results show that curvature energy does not affect the saddle point of 224Th, but pushes the saddle point of 200Pb backwards the ground state. The stronger the deformation dependence of the level density parameter is, the closer the saddle point of entropy barrier for these systems is to the ground state. In order to further investigate how curvature energy affects TDF through nuclear potential and entropy, respectively, the prescission neutron multiplicity (PNM) is selected as the probe, some simulations based on two schemes are carried out. The results show that curvature energy reduces the potential driving force of 200Pb and 224Th, and enhances the entropy potential driving force. Combined with the calculations and analyses of PNM, the former effect is more obvious than the latter, so curvature energy weakens TDF of two systems on whole, thus delaying the nuclear fission process of two systems.
  • [1] HAHN O, STRASSMANN F. Naturwiss, 1938, 26:756; ibid, 1939, 27:11; ibid, 1939, 27:89.
    [2] LILLEY J S. Nuclear Physics:Principles and Applications[M]. Chichester:John Wiley and Sons, Inc., 2001.
    [3] LOVELAND W D, MORRISSEY D J, SEABORG G T. Modern Nuclear Chemistry[M]. New Jersey:John Wiley and Sons, Inc., 2006.
    [4] SCHRÖDER W U, HUIZENGA J R. In Treatise on Heavy-Ion Science (Vol. 2)[M]. BROMLEY D A ed. New York:Plenum, 1984:116.
    [5] BULGAC A. Annu Rev Nucl Part Sci, 2013, 63:97; BULGAC A, MAGIERSKI P, ROCHE K J, et al. Phys Rev Lett, 2016, 116:122504.
    [6] GODDARD P, STEVENSON P, RIOS A. Phys Rev C, 2015, 92:054610; ibid 93:014620.
    [7] SCHUNCK N, ROBLEDO L M. Rep Prog Phys, 2016, 79:116301.
    [8] LU B N, ZHAO E G, ZHOU S G. Phys Rev C, 2012, 85:011301(R); ZHAO J, LU B N, ZHAO E G, et al. Phys Rev C, 2017, 95:014320.
    [9] ZHAO P W, LI Z P, YAO J M, MENG J. Phys Rev C, 2010, 82:054319.
    [10] PEI J C, NAZAREWICZ W, SHEIKH J A, et al. Phys Rev Lett, 2009, 102:192501; ZHU Y, PEI J C. Phys Rev C, 2016, 94:024329.
    [11] KRAMERS H A. Physica VⅡ, 1940, 4:284.
    [12] GRANGÉ P, PAULI H C, WEIDENMÜLLER H A. Phys Lett B, 1980, 88:9; GRANGÉ P, WEIDENMÜLLER H A. Phys Lett B, 1980, 96:26; GRANGÉ P, LI J Q, WEI-DENMÜLLER H A. Phys Rev C, 1983, 27:2063. WEIDENMÜLLER H A, ZHANG J S. Phys Rev C, 1984, 29:879.
    [13] WU X Z, ZHOU Y Z, CHANG X Z, et al. Commun Theor Phys, 1982, 1:769.
    [14] FRÖBRICH P, GONTCHAR I I, MAVLITOV N D. Nucl Phys A, 1993, 556:281; FRÖBRICH P, GONTCHAR I I. Phys Rep, 1998, 292:131.
    [15] JIA Y, BAO J Dong. Phys Rev C, 2007, 75:034601; JIA Y, BAO J D. Nuclear Physics Review, 2004, 21(4):385. (in Chinese) (贾莹, 包景东. 原子核物理评论, 2004, 21(4):385.)
    [16] NADTOCHY P N, RYABOV E G, GEGECHKORI A E, et al. Phys Rev C, 2012, 85:064619.
    [17] ISHIZUKA C, USANG M D, IVANYUK F A, et al. Phys Rev C, 2017, 96:064616.
    [18] SIERK A J. Phys Rev C, 2017, 96:034603.
    [19] WANG N, YE W. Phys Rev C, 2018, 97:014603.
    [20] BLOCKI J, BONEH Y, NIX J R, et al. Ann Phys, 1978, 113:330.
    [21] FELDMEIER H. Rep Prog Phys, 1987, 50:915.
    [22] NIX J R, SIERK A J. Proc. Of the 6th Adriatic Conference in Nuclure Physics:Frontiers of Heavy-Ion Physics[M]. Singapore:World Scientific, 1990:333.
    [23] HINDE D J, OGATA H, TANAKA M, et al. Phys Rev C, 1989, 39:2268.
    [24] MAO Y C, GU B P. J Phys G:Nucl Part Phys, 2006, 32:2109.
    [25] GONTCHAR I I, MAVLITOV N D, FRÖBRICH P. Comput Phys Commun, 1997, 107:223.
    [26] IGNATYUK A V, SHUBIN YU N, TISHIN A S. Sov J Nucl Phys, 1975, 21:255.
    [27] TÖKE J, SWIATECKI J. Nucl Phys A, 1981, 372:141.
    [28] REISDORF W. Z Phys A, 1981, 300:227.
    [29] PRAKASH M, WAMBACH J, MA Z Y. Phys Lett B, 1983, 128:141.
    [30] MYERS W D, SWIATECKI W J. Nucl Phys A, 1966, 81:1; MYERS W D. Droplet Model of Atomic Nuclei[M]. New York:Plenum, 1977.
    [31] HASSE R W. Ann Phys, 1971, 68:377.
    [32] LIU X, XI Y R, ZHU Q D, et al. Nuclear Physics Review, 2018, 35(2):105. (in Chinese) (刘鑫, 席宇荣, 朱巧迪, 等. 原子核物理评论, 2018, 35(2):105.)
    [33] NEWTON J O, HINDE D J, CHARITY R J, et al. Nucl Phys A, 1988, 483:126.
    [34] HINDE D J, CHARITY R J, FOOTE G S, et al. Phys Rev Lett, 1984, 52:986; ibid, 1984, 53, 2275(E); ibid, Nucl Phys A, 1986, 452:550.
  • 加载中
计量
  • 文章访问数:  2009
  • HTML全文浏览量:  295
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-23
  • 修回日期:  2018-11-21
  • 刊出日期:  2020-05-03

曲率能对热力学驱动力的影响

doi: 10.11804/NuclPhysRev.35.04.555
    基金项目:  国家自然科学基金资助项目(11447019,11505724,11375080)
    作者简介:

    朱巧迪(1993-),女,辽宁鞍山人,硕士研究生,从事原子核物理研究;E-mail:qiaodizhu2018@163.com

    通讯作者: 毛英臣,E-mail:myc@lnnu.edu.cn
  • 中图分类号: O571.53

摘要: 为了研究曲率能对核裂变热力学驱动力(TDF)的影响,首先利用包含曲率能的截断版小液滴模型计算了200Pb和224Th的位垒和熵垒,对比液滴模型的计算结果表明:曲率能未改变224Th的位垒鞍点,却将200Pb的位垒鞍点向后推移。能级密度参数的形变关系越强则两系统的熵垒鞍点越靠近基态。为了进一步探究曲率能如何通过位势和熵势影响TDF,以断前中子多重性(PNM)为探针,通过两种方案进行了模拟,结果表明:曲率能降低了两系统的位势驱动力,而增强了其熵势驱动力。结合PNM的计算表明,前一种效应要比后一种效应明显,因此曲率能总体减弱了200Pb和224Th的TDF,进而延缓了两系统的核裂变进程。


In order to study the effect of curvature energy on the thermodynamic driving force (TDF) of nuclear fission, the potential and entropy barrier of 200Pb and 224Th systems are calculated by using the truncated droplet model including curvature energy, respectively. Compared with the liquid drop model, the results show that curvature energy does not affect the saddle point of 224Th, but pushes the saddle point of 200Pb backwards the ground state. The stronger the deformation dependence of the level density parameter is, the closer the saddle point of entropy barrier for these systems is to the ground state. In order to further investigate how curvature energy affects TDF through nuclear potential and entropy, respectively, the prescission neutron multiplicity (PNM) is selected as the probe, some simulations based on two schemes are carried out. The results show that curvature energy reduces the potential driving force of 200Pb and 224Th, and enhances the entropy potential driving force. Combined with the calculations and analyses of PNM, the former effect is more obvious than the latter, so curvature energy weakens TDF of two systems on whole, thus delaying the nuclear fission process of two systems.

English Abstract

朱巧迪, 迟萌, 李京珂, 李佳阳, 毛英臣. 曲率能对热力学驱动力的影响[J]. 原子核物理评论, 2018, 35(4): 555-560. doi: 10.11804/NuclPhysRev.35.04.555
引用本文: 朱巧迪, 迟萌, 李京珂, 李佳阳, 毛英臣. 曲率能对热力学驱动力的影响[J]. 原子核物理评论, 2018, 35(4): 555-560. doi: 10.11804/NuclPhysRev.35.04.555
ZHU Qiaodi, CHI Meng, LI Jingke, LI Jiayang, MAO Yingchen. Influence of Curvature Energy on Thermodynamic Driving Force[J]. Nuclear Physics Review, 2018, 35(4): 555-560. doi: 10.11804/NuclPhysRev.35.04.555
Citation: ZHU Qiaodi, CHI Meng, LI Jingke, LI Jiayang, MAO Yingchen. Influence of Curvature Energy on Thermodynamic Driving Force[J]. Nuclear Physics Review, 2018, 35(4): 555-560. doi: 10.11804/NuclPhysRev.35.04.555
参考文献 (34)

目录

    /

    返回文章
    返回