高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超越平均场模型对Ba同位素链八极形状演化研究

孙玮 全珊 向剑 李志攀

孙玮, 全珊, 向剑, 李志攀. 超越平均场模型对Ba同位素链八极形状演化研究[J]. 原子核物理评论, 2019, 36(2): 144-150. doi: 10.11804/NuclPhysRev.36.02.144
引用本文: 孙玮, 全珊, 向剑, 李志攀. 超越平均场模型对Ba同位素链八极形状演化研究[J]. 原子核物理评论, 2019, 36(2): 144-150. doi: 10.11804/NuclPhysRev.36.02.144
SUN Wei, QUAN Shan, XIANG Jian, LI Zhipan. Beyond-mean-field Study of Octupole Shape Evolution in Neutron-deficient Ba Isotopes[J]. Nuclear Physics Review, 2019, 36(2): 144-150. doi: 10.11804/NuclPhysRev.36.02.144
Citation: SUN Wei, QUAN Shan, XIANG Jian, LI Zhipan. Beyond-mean-field Study of Octupole Shape Evolution in Neutron-deficient Ba Isotopes[J]. Nuclear Physics Review, 2019, 36(2): 144-150. doi: 10.11804/NuclPhysRev.36.02.144

超越平均场模型对Ba同位素链八极形状演化研究

doi: 10.11804/NuclPhysRev.36.02.144
基金项目: 国家自然科学基金资助项目(11475140,11875225,11765015);贵州省教育厅青年科技人才成长项目(黔教合KY字[2016]312);国家级大学生创新创业训练计划(201810635045)
详细信息
    作者简介:

    孙玮(1998-),女,山东泰安人,本科生,从事原子核物理研究;E-mail:sdweiwei hi@126.com

    通讯作者: 向剑,E-mail:jxiang@sgmtu.edu.cn;李志攀,E-mail:zpliphy@swu.edu.cn
  • 中图分类号: O571.53

Beyond-mean-field Study of Octupole Shape Evolution in Neutron-deficient Ba Isotopes

Funds: National Natural Science Foundation of China (11475140, 11875225, 11765015); Joint Fund Project of Education Department in Guizhou Province(Qianjiaohe KY Zi[2016]312); National Undergraduate Training Programs for Innovation and Entrepreneurship (201810635045)
  • 摘要: 本文采用超越平均场模型研究了缺中子Ba同位素链114-124Ba的八极形变及其演化规律。计算了Ba链的位能曲面、低能激发谱、电四极跃迁几率、电八极跃迁几率及集体波函数的几率密度分布,并与实验相比较。理论计算较好地再现了Ba核的低能激发结构。位能曲面、低能的负宇称带、较大的B(E3;31- → 01+)和展宽的几率密度分布表明,114Ba中存在较强的八极关联。116,118Ba具有过渡核特征,而120-124Ba则为典型的四极形变原子核。
  • [1] BUTLER P A, NAZAREWICZ W. Rev Mod Phys, 1996, 68:349.
    [2] AHMAD I, BUTLER P A. Annu Rev Nucl Part Sci, 1993, 43:71.
    [3] BUTLER P A, WILLMANN L. Nucl Phys News, 2015, 25:12.
    [4] BUTLER P A. J Phys G, 2016, 43:073002.
    [5] GAFFNEY L P, BUTLER P A, SCHECK M, et al. Nature (London), 2013, 497:199.
    [6] BUCHER B, ZHU S, WU C Y, et al. Phys Rev Lett, 2016, 116:112503.
    [7] BUCHER B, ZHU S, WU C Y, et al. Phys Rev Lett, 2017, 118:152504.
    [8] DING B, LIU Z, SEWERYNIAK D, et al. Phys Rev C, 2017, 95:024301.
    [9] SMITH J F, CHIARA C J, FOSSAN D B, et al. Phys Lett B, 2001, 523:13.
    [10] DE ANGELIS G, GADEA A, FARNEA E, et al. Phys Lett B, 2002, 535:93.
    [11] DEGRAAF J, CROMAZ M, DRAKE T E, et al. Phys Rev C, 1998, 58:164.
    [12] LIU Z, SUN X, ZHOU X, et al. Eur Phys J A, 1998, 1:125.
    [13] SMITH J F, CHIARA C J, FOSSAN D B, et al. Phys Rev C, 1998, 57:R1037.
    [14] CHEN X C, ZHAO J, XU C, et al. Phys Rev C, 2016, 94:021301.
    [15] ZHU S J, SAKHAEE M, YANG L M, et al. Chin Phys Lett, 2001, 18:1027.
    [16] MASON P, BENZONI G, BRACCO A, et al. Phys Rev C, 2005, 72:064315.
    [17] AFANASJEV A V, ABUSARA H, AGBEMAVA, S E. Phys Scr, 2018, 93:034002.
    [18] FU Y, WANG H, WANG L J, et al. Phys Rev C, 2018, 97:024338.
    [19] MAREVIC P, EBRAN J P, KHAN E, et al. Phys Rev C, 2018, 97:024334.
    [20] NOMURA K, NIKSIC T, VRETENAR D. Phys Rev C, 2018, 97:024317.
    [21] ZHANG W, NIU Y F. Phys Rev C,2017, 96:054308.
    [22] AGBEMAVA S E, AFANASJEV A V. Phys Rev C, 2017, 96:024301.
    [23] YAO J M, ENGEL J. Phys Rev C, 2016, 94:014306.
    [24] GENG L S, MENG J, TOKI H. Chin Phys Lett, 2017, 24:1865.
    [25] GUO J Y, JIAO P, FANG X Z. Phys Rev C, 2010, 82:047301.
    [26] ROBLEDO L M, BALDO M, SCHUCK P, et al. Phys Rev C, 2010, 81:034315.
    [27] ROBLEDO L M, BERTSCH G F. Phys Rev C, 2011, 84:054302.
    [28] RODRIGUEZ-GUZMAN R, ROBLEDO L M, SARRIGUREN P. Phys Rev C, 2012, 86:034336.
    [29] ROBLEDO L M, BUTLER P A. Phys Rev C, 2013, 88:051302.
    [30] BERNARD R N, ROBLEDO L M, RODRIGUEZ T R. Phys Rev C, 2016, 93:061302.
    [31] ROBLEDO L M. J Phys G, 2015, 42:055109.
    [32] ZHAO J, LU B N, ZHAO E G, et al. Phys Rev C, 2012, 86:057304.
    [33] ZHOU S G. Phys Scr, 2016, 91:063008.
    [34] NOMURA K, VRETENAR D, LU B N. Phys Rev C, 2013, 88:021303.
    [35] NOMURA K, VRETENAR D, NIKSIC T, et al. Phys Rev C, 2014, 89:024312.
    [36] NOMURA K, RODRIGUEZ-GUZMAN R, ROBLEDO L M. Phys Rev C, 2015, 92:014312.
    [37] AGBEMAVA S E, AFANASJEV A V, RING P. Phys Rev C, 2016, 93:044304.
    [38] YAO J M, HAGINO K. Phys Rev C, 2016, 94:011303.
    [39] ZHANG W, LI Z P, ZHANG S Q, et al. Phys Rev C, 2010, 81:034302.
    [40] LI Z P, SONG B Y, YAO J M, et al. Phys Lett B, 2013, 726:866.
    [41] YAO J M, ZHOU E F, LI Z P. Phys Rev C, 2015, 92:041304.
    [42] LI Z P, NIKSIC T, VRETENAR D. J Phys G, 2016, 43:024005.
    [43] ZHOU E F, YAO J M,LI Z P, et al. Phys Lett B, 2016, 753:227.
    [44] XIA S Y, TAO H, LU Y, et al. Phys Rev C, 2017, 96:054303.
    [45] TAO H, ZHAO J, LI Z P, et al. Phys Rev C, 2017, 96:024319.
    [46] EBATA S, NAKATSUKASA T. Phys Scr, 2017, 92:064005.
    [47] MOLLER P, BENGTSSON R, CARLSSON B G, et al. At Data Nucl Data Tables, 2008, 94:758.
    [48] WANG H L, YANG J, LIU M L, et al. Phys Rev C, 2015, 92:024303.
    [49] NAZAREWICZ W, OLANDERS P, RAGNARSSON I, et al. Nucl Phys A, 1984, 429:269.
    [50] LIU C, WANG S Y, QI B, et al. Chin Phys C, 2018, 42:074105.
    [51] ZAMFIR N V, KUSNEZOV D. Phys Rev C, 2001, 63:054306.
    [52] OTSUKA T, SUGITA M. Phys Lett B, 1988, 209:140.
    [53] CHEN Y S, GAO Z C. Phys Rev C, 2000, 63:014314.
    [54] CHEN Y J, GAO Z C, CHEN Y S, et al. Phys Rev C, 2015, 91:014317.
    [55] BENDER M, HEENEN P H, REINHARD P G. Rev Mod Phys, 2003, 121:75.
    [56] RING P. Prog Part Nucl Phys, 1996, 37:193.
    [57] VRETENAR D, AFANASJEV A V, LALAZISSIS G A, et al. Phys Rep, 2005, 409:101.
    [58] MENG J, TOKI H, ZHOU S G, et al. Prog Part Nucl Phys, 2006, 57:470.
    [59] MENG J, PENG J, ZHANG S Q, et al. Front Phys, 2013, 8:55.
    [60] MENG J. Relativistic Density Functional for Nuclear Structure[M]. Singapore:World Scientific, 2016.
    [61] MENG J, SUGAWARA-TANABE K, YAMAJI S, et al. Phys Rev C, 1999, 59:154.
    [62] ZHOU S G, MENG J, RING P. Phys Rev Lett, 2003, 91:262501.
    [63] LIANG H Z, MENG J, ZHOU S G. Phys Rep, 2015, 570:1.
    [64] LONG W H, MEGN J, VAN GIAI N, et al. Phys Rev C, 2004, 69:034319.
    [65] ZHANG W, MENG J, ZHANG S Q, et al. Nucl Phys A, 2005, 753:106.
    [66] ZHAO P W, LI Z P, YAO J M, et al. Phys Rev C, 2010, 82:054319.
    [67] ZHANG W, LI Z P, ZHANG S Q. Phys Rev C, 2013, 88:054324.
    [68] QUAN S, CHEN Q, LI Z P, et al. Phys Rev C, 2017, 95:054321.
    [69] LU K Q, LI Z X, LI Z P, et al. Phys Rev C, 2015, 91:027304.
    [70] ZHANG Q S, NIU Z M, LI Z P, et al. Fron of Phys, 2014, 9:529.
    [71] MENG J, RING P. Phys Rev Lett, 1996, 77:3963.
    [72] MENG J, RING P. Phys Rev Lett, 1998, 80:460.
    [73] MENG J, TOKI H, ZENG J Y, et al. Phys Rev C, 2002, 65:041302.
    [74] MENG J, ZHOU S G. J Phys G, 2015, 42:093101.
    [75] LIANG H Z, VAN GIAI N, MENG J. Phys Rev Lett, 2008, 101:122502.
    [76] LIANG H Z, VAN GIAI N, MENG J. Phys Rev C, 2009, 79:064316.
    [77] ZHAO P W, ZHANG S Q, PENG J, et al. Phys Lett B, 2011, 699:181.
    [78] ZHAO P W, PENG J, LIANG H Z, et al. Phys Rev Lett, 2011, 107:122501.
    [79] ZHAO P W, PENG J, LIANG H Z, et al. Phys Rev C, 2012, 85:054310.
    [80] ZHAO P W, ITAGAKI N, MENG J. Phys Rev Lett, 2015, 115:022501.
    [81] ZHAO P W, ZHANG S Q, MENG J. Phys Rev C, 2015, 92:034319.
    [82] ZHAO P W. Phys Lett B, 2017, 773:1.
    [83] RING P, SCHUCK P. The Nuclear Many-Body Problem[M]. Heidelberg:Springer-Verlag, 1980.
    [84] YAO J M, HAGINO K, LI Z P, et al. Phys Rev C, 2014, 89:054306.
    [85] XU Z, LI Z P. Chin Phys C, 2017, 41:124107.
    [86] INGLIS D R. Phys Rev, 1956, 103:1786.
    [87] BELIAEV S T. Nucl Phys, 1961, 24:322.
    [88] GIROD M, GRAMMATICOS B. Nucl Phys A, 1979, 330:40.
    [89] NIKSIC T, VRETENAR D, RING P. Phys Rev C, 2008, 78:034318.
    [90] TIAN Y, MA Z Y, RING P. Phys Lett B, 2009, 676:44.
    [91] NIKSIC T, PAAR N, VRETENAR D, et al. Commp Phys Comm, 2014, 185:1808.
    [92] NNDC National Nuclear Data Center, Brookhaven National Laboratory.[EB/OL].[2018-08-1]. http://www.nndc.bnl.gov/.
    [93] HINOHARA N, LI Z P, NAKATSUKASA T, et al. Phys Rev C, 2012, 85:024323.
  • 加载中
计量
  • 文章访问数:  1170
  • HTML全文浏览量:  172
  • PDF下载量:  121
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-17
  • 修回日期:  2019-03-27
  • 刊出日期:  2019-06-20

超越平均场模型对Ba同位素链八极形状演化研究

doi: 10.11804/NuclPhysRev.36.02.144
    基金项目:  国家自然科学基金资助项目(11475140,11875225,11765015);贵州省教育厅青年科技人才成长项目(黔教合KY字[2016]312);国家级大学生创新创业训练计划(201810635045)
    作者简介:

    孙玮(1998-),女,山东泰安人,本科生,从事原子核物理研究;E-mail:sdweiwei hi@126.com

    通讯作者: 向剑,E-mail:jxiang@sgmtu.edu.cn;李志攀,E-mail:zpliphy@swu.edu.cn
  • 中图分类号: O571.53

摘要: 本文采用超越平均场模型研究了缺中子Ba同位素链114-124Ba的八极形变及其演化规律。计算了Ba链的位能曲面、低能激发谱、电四极跃迁几率、电八极跃迁几率及集体波函数的几率密度分布,并与实验相比较。理论计算较好地再现了Ba核的低能激发结构。位能曲面、低能的负宇称带、较大的B(E3;31- → 01+)和展宽的几率密度分布表明,114Ba中存在较强的八极关联。116,118Ba具有过渡核特征,而120-124Ba则为典型的四极形变原子核。

English Abstract

孙玮, 全珊, 向剑, 李志攀. 超越平均场模型对Ba同位素链八极形状演化研究[J]. 原子核物理评论, 2019, 36(2): 144-150. doi: 10.11804/NuclPhysRev.36.02.144
引用本文: 孙玮, 全珊, 向剑, 李志攀. 超越平均场模型对Ba同位素链八极形状演化研究[J]. 原子核物理评论, 2019, 36(2): 144-150. doi: 10.11804/NuclPhysRev.36.02.144
SUN Wei, QUAN Shan, XIANG Jian, LI Zhipan. Beyond-mean-field Study of Octupole Shape Evolution in Neutron-deficient Ba Isotopes[J]. Nuclear Physics Review, 2019, 36(2): 144-150. doi: 10.11804/NuclPhysRev.36.02.144
Citation: SUN Wei, QUAN Shan, XIANG Jian, LI Zhipan. Beyond-mean-field Study of Octupole Shape Evolution in Neutron-deficient Ba Isotopes[J]. Nuclear Physics Review, 2019, 36(2): 144-150. doi: 10.11804/NuclPhysRev.36.02.144
参考文献 (93)

目录

    /

    返回文章
    返回