高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CSRe储存环等时性模式转变能洛伦兹因子曲线的测量与校正

陈瑞九 葛文文 颜鑫亮 原有进 王猛 张玉虎

陈瑞九, 葛文文, 颜鑫亮, 原有进, 王猛, 张玉虎. CSRe储存环等时性模式转变能洛伦兹因子曲线的测量与校正[J]. 原子核物理评论, 2019, 36(3): 305-312. doi: 10.11804/NuclPhysRev.36.03.305
引用本文: 陈瑞九, 葛文文, 颜鑫亮, 原有进, 王猛, 张玉虎. CSRe储存环等时性模式转变能洛伦兹因子曲线的测量与校正[J]. 原子核物理评论, 2019, 36(3): 305-312. doi: 10.11804/NuclPhysRev.36.03.305
CHEN Ruijiu, GE Wenwen, YAN Xinliang, YUAN Youjin, WANG Meng, ZHANG Yuhu. Measurements and Corrections of the Lorentz Factor of Transition Energy of the CSRe Storage Ring in the Isochronous Mode[J]. Nuclear Physics Review, 2019, 36(3): 305-312. doi: 10.11804/NuclPhysRev.36.03.305
Citation: CHEN Ruijiu, GE Wenwen, YAN Xinliang, YUAN Youjin, WANG Meng, ZHANG Yuhu. Measurements and Corrections of the Lorentz Factor of Transition Energy of the CSRe Storage Ring in the Isochronous Mode[J]. Nuclear Physics Review, 2019, 36(3): 305-312. doi: 10.11804/NuclPhysRev.36.03.305

CSRe储存环等时性模式转变能洛伦兹因子曲线的测量与校正

doi: 10.11804/NuclPhysRev.36.03.305
基金项目: 国家重点研发计划项目(2016YFA0400504);国家自然科学基金资助项目(11605252,11605248);
详细信息
    作者简介:

    陈瑞九(1985-),男,福建仙游人,副研究员,博士,从事原子核与粒子物理研究,E-mail:chenrj13@impcas.ac.cn

    通讯作者: 原有进,E-mail:yuanyj@impcas.ac.cn。
  • 中图分类号: O571.53

Measurements and Corrections of the Lorentz Factor of Transition Energy of the CSRe Storage Ring in the Isochronous Mode

Funds: National Key R&D Program of China (2016YFA0400504); National Natural Science Foundation of China (11605252, 11605248)
  • 摘要: 综述了兰州冷却储存环CSRe上转变能洛伦兹因子的测量与校正的最新进展,详细阐述了基于等时性质谱仪实验数据测量储存环的转变能洛伦兹因子的方法,以及利用CSRe二极、四极、六极磁铁校正转变能洛伦兹因子曲线的结果。实验结果表明,二极磁铁和四极磁铁可以平移转变能洛伦兹因子曲线,六极磁铁可以旋转转变能洛伦兹因子曲线。通过校正CSRe的转变能洛伦兹因子曲线,将CSRe对目标离子的质量分辨能力R=m/△m=3.15(9)×104(FWHM)(回旋周期相对误差σT/T=7.3(2)×10-6)提高到1.72(4)×105(FWHM)(σT/T=1.34(3)×10-6)。
  • [1] LUNNEY D, PEARSON J M, THIBAULT C. Reviews of Modern Physics, 2003, 75(3):1021.
    [2] BLAUM K. Physics Reports, 2006, 425(1):1.
    [3] BLAUM K, LITVINOV Y A. International Journal of Mass Spectrometry, 2013, 349-350:1.
    [4] ZHANG Y H, LITVINOV Y A, UESAKA T, et al. Physica Scripta, 2016, 91(7):073002.
    [5] LITVINOV Y A, GEISSEL H, KNöBEL R, et al. Acta Physica Polonica B, 2010, 41(2):511.
    [6] BOSCH F, LITVINOV Y A, STÖHLKER T. Progress in Particle and Nuclear Physics, 2013, 73:84.
    [7] HAUSMANN M, STADLMANN J, ATTALLAH F, et al. Hyperfine Interactions, 2001, 132(1):291.
    [8] STADLMANN J, HAUSMANN M, ATTALLAH F, et al. Physics Letters B, 2004, 586(1):27.
    [9] SUN B, KNÖBEL R, LITVINOV Y A, et al. Nuclear Physics A, 2008, 812:1.
    [10] KNÖBEL R, DIWISCH M, BOSCH F, et al. Physics Letters B, 2016, 754:288.
    [11] KNÖBEL R, DIWISCH M, GEISSEL H, et al. The European Physical Journal A, 2016, 52(5):138.
    [12] WANG M, XU H S, XIA J W, et al. International Journal of Modern Physics E, 2009, 18(2):352.
    [13] TU X L, WANG M, LITVINOV Y A, et al. Nucl Instr and Meth A, 2011, 654(1):213.
    [14] TU X L, XU H S, WANG M, et al. Physical Review Letters, 2011, 106(112501).
    [15] ZHANG Y H, XU H S, LITVINOV Y A, et al. Physical Review Letters, 2012, 109(102501).
    [16] YAN X L, XU H S, LITVINOV Y A, et al. The Astrophysical Journal, 2013, 766(1):L8.
    [17] SHUAI P, XU H S, TU X L, et al. Physics Letters B, 2014, 735:327.
    [18] XU X, ZHANG P, SHUAI P, et al. Physical Review Letters, 2016, 117(18):182503.
    [19] ZHANG P, XU X, SHUAI P, et al. Physics Letters B, 2017, 767:20.
    [20] FU C Y, ZHANG Y H, ZHOU X H, et al. Physical Review C, 2018, 98(1):014315.
    [21] XING Y M, LI K A, ZHANG Y H, et al. Physics Letters B, 2018, 781:358.
    [22] ZHANG Y H, ZHANG P, ZHOU X H, et al. Physical Review C, 2018, 98(1):014319.
    [23] OZAWA A, UESAKA T, WAKASUGI M. Progress of Theoretical and Experimental Physics, 2012, 2012(1):03C009.
    [24] YAMAGUCHI T, YAMAGUCHI Y, OZAWA A. International Journal of Mass Spectrometry, 2013, 349-350:240-246.
    [25] YAMAGUCHI Y, WAKASUGI M, UESAKA T, et al. Nucl Instr and Meth B, 2013, 317:629.
    [26] YAMAGUCHI Y, MIURA H, WAKASUGI M, et al. Physica Scripta, 2015, 2015(T166):014056.
    [27] YAMAGUCHI T for the Rare-RI Ring collaboration. Physica Scripta, 2015, 2015(T166):014039.
    [28] YANG J C, XIA J W, XIAO G Q, et al. Nucl Instr and Meth B, 2013, 317:263.
    [29] WU B, YANG J C, XIA J W, et al. Nucl Instr and Meth A, 2018, 881:27.
    [30] WU Bo, YANG Jiancheng, GE Wenwen, et al. Nuclear Physics Review, 2018, 35(3):270. (in Chinese) (吴波, 杨建成, 葛文文, 等. 原子核物理评论, 2018, 35(3):270.)
    [31] GE Wenwen, YUAN Youjin, YANG Jiancheng, et al. Nuclear Physics Review, 2018, 35(2):147. (in Chinese) (葛文文, 原有进, 杨建成, 等. 原子核物理评论, 2018, 35(2):147.)
    [32] MA X, WEN W Q, ZHANG S F, et al. Nucl Instr and Meth B, 2017, 408:169.
    [33] FAIR. Baseline Technical Report[EB/OL] [2018-09-20].
    [34] WOLLNIK H. Nucl Instr and Meth B, 1987, 26:267.
    [35] HAUSMANN M, ATTALLAH F, BECKERT K, et al. Nucl Instr and Meth A, 2000, 446(3):569.
    [36] FRANZKE B, GEISSEL H, MUNZENBERG G. Mass Spectrometry Reviews, 2008, 27(5):428.
    [37] TRÖTSCHER J, BALOG K, EICKHOFF H, et al. Nucl Instr and Meth B, 1992, 70(1-4):455.
    [38] MEI B, TU X L, WANG M, et al. Nucl Instr and Meth A, 2010, 624(1):109.
    [39] ZHANG W, TU X L, WANG M, et al. Nucl Instr and Meth A, 2014, 756:1.
    [40] DOLINSKII A, GEISSEL H, LITVINOV S, et al. Nucl Instr and Meth B, 2008, 266(19-20):4579.
    [41] CHEN R J, YUAN Y J, WANG M, et al. Physica Scripta, 2015, T166:014044.
    [42] DOLINSKII A, LITVINOV S, STECK M, et al. Nucl Instr and Meth A, 2007, 574(2):207.
    [43] LITVINOV S, TOPREK D, WEICK H, et al. Nucl Instr and Meth A, 2013, 724:20.
    [44] GEISSEL H, KNöBEL R, LITVINOV Y A, et al. Hyperfine Interactions, 2006, 173(1-3):49.
    [45] GEISSEL H, LITVINOV Y A. Journal of Physics G:Nuclear and Particle Physics, 2005, 31(10):S1779.
    [46] XING Y M, WANG M, ZHANG Y H, et al. Physica Scripta, 2015, T166:014010.
    [47] XU X, WANG M, SHUAI P, et al. Chinese Physics C, 2015, 39(10):106201.
    [48] SHUAI P, XU X, ZHANG Y H, et al. Nucl Instr and Meth B, 2016, 376:311.
    [49] CHEN R J, YAN X L, GE W W, et al. Nucl Instr and Meth A, 2018, 898:111.
    [50] GE W W, YUAN Y J, YANG J C,et al. Nucl Instr and Meth A, 2018, 908:388.
    [51] XIA J W, ZHAN W L, WEI B W, et al. Nucl Instr and Meth A, 2002, 488(1-2):11.
    [52] XIA J W, ZHAN W L, WEI B W, et al. High Power Laser and Particle Beams, 2008, 11:1787.
    [53] IU Dawei, WANG Meng, XU Xing, et al. Nuclear Physics Review, 2016, 33(3):302. (in Chinese) (刘大委, 王猛, 徐星, 等. 原子核物理评论, 2016, 33(3):302.)
    [54] CHEN R J, WANG M, YAN X L, et al. Computer Physics Communications, 2017, 221(Supplement C):216.
    [55] YAN Xinliang. Precision Mass Measurements of Neutrondeficient Nuclei in Storage Rings[D]. Beijing:University of Chinese Academy of Sciences, 2014. (in Chinese) (颜鑫亮. 储存环上短寿命缺中子核素的精确质量测量[D]. 北京:中国科学院大学, 2014.)
    [56] SHUAI Peng. Accurate Mass Measurements of Short-lived Nuclides at the HIRF-CSR facility[D]. Hefi:University of Science and Technology of China, 2014. (in Chinese) (帅鹏. HIRFL-CSR上短寿命核素质量的精确测量[D]. 合肥:中国科学技术大学, 2014.)
    [57] TARASOV O B, BAZIN D. Nucl Instr and Meth B, 2008, 266(19-20):4657. http://lise.nscl.msu.edu and https://webdocs.gsi.de/weick/atima/
    [58] HUANG W J, AUDI G, WANG M, et al. Chinese Physics C, 2017, 41(3).
    [59] YAN X L, CHEN R J, WANG M, et al. Nucl Instr and Meth A, 2019, 931:52.
  • 加载中
计量
  • 文章访问数:  1363
  • HTML全文浏览量:  150
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-21
  • 修回日期:  2019-03-06
  • 刊出日期:  2019-09-20

CSRe储存环等时性模式转变能洛伦兹因子曲线的测量与校正

doi: 10.11804/NuclPhysRev.36.03.305
    基金项目:  国家重点研发计划项目(2016YFA0400504);国家自然科学基金资助项目(11605252,11605248);
    作者简介:

    陈瑞九(1985-),男,福建仙游人,副研究员,博士,从事原子核与粒子物理研究,E-mail:chenrj13@impcas.ac.cn

    通讯作者: 原有进,E-mail:yuanyj@impcas.ac.cn。
  • 中图分类号: O571.53

摘要: 综述了兰州冷却储存环CSRe上转变能洛伦兹因子的测量与校正的最新进展,详细阐述了基于等时性质谱仪实验数据测量储存环的转变能洛伦兹因子的方法,以及利用CSRe二极、四极、六极磁铁校正转变能洛伦兹因子曲线的结果。实验结果表明,二极磁铁和四极磁铁可以平移转变能洛伦兹因子曲线,六极磁铁可以旋转转变能洛伦兹因子曲线。通过校正CSRe的转变能洛伦兹因子曲线,将CSRe对目标离子的质量分辨能力R=m/△m=3.15(9)×104(FWHM)(回旋周期相对误差σT/T=7.3(2)×10-6)提高到1.72(4)×105(FWHM)(σT/T=1.34(3)×10-6)。

English Abstract

陈瑞九, 葛文文, 颜鑫亮, 原有进, 王猛, 张玉虎. CSRe储存环等时性模式转变能洛伦兹因子曲线的测量与校正[J]. 原子核物理评论, 2019, 36(3): 305-312. doi: 10.11804/NuclPhysRev.36.03.305
引用本文: 陈瑞九, 葛文文, 颜鑫亮, 原有进, 王猛, 张玉虎. CSRe储存环等时性模式转变能洛伦兹因子曲线的测量与校正[J]. 原子核物理评论, 2019, 36(3): 305-312. doi: 10.11804/NuclPhysRev.36.03.305
CHEN Ruijiu, GE Wenwen, YAN Xinliang, YUAN Youjin, WANG Meng, ZHANG Yuhu. Measurements and Corrections of the Lorentz Factor of Transition Energy of the CSRe Storage Ring in the Isochronous Mode[J]. Nuclear Physics Review, 2019, 36(3): 305-312. doi: 10.11804/NuclPhysRev.36.03.305
Citation: CHEN Ruijiu, GE Wenwen, YAN Xinliang, YUAN Youjin, WANG Meng, ZHANG Yuhu. Measurements and Corrections of the Lorentz Factor of Transition Energy of the CSRe Storage Ring in the Isochronous Mode[J]. Nuclear Physics Review, 2019, 36(3): 305-312. doi: 10.11804/NuclPhysRev.36.03.305
参考文献 (59)

目录

    /

    返回文章
    返回