高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自适应遗传算法的质子调强放疗扫描路径优化

张练 裴曦 皮一飞 刘红冬 郭翌 汪志 徐榭

张练, 裴曦, 皮一飞, 刘红冬, 郭翌, 汪志, 徐榭. 基于自适应遗传算法的质子调强放疗扫描路径优化[J]. 原子核物理评论, 2018, 35(2): 189-195. doi: 10.11804/NuclPhysRev.35.02.189
引用本文: 张练, 裴曦, 皮一飞, 刘红冬, 郭翌, 汪志, 徐榭. 基于自适应遗传算法的质子调强放疗扫描路径优化[J]. 原子核物理评论, 2018, 35(2): 189-195. doi: 10.11804/NuclPhysRev.35.02.189
ZHANG Lian, PEI Xi, PI Yifei, LIU Hongdong, GUO Yi, WANG Zhi, XU Xie. IAGA Based Spot Scanning Path Optimization for Intensity Modulated Proton Therapy[J]. Nuclear Physics Review, 2018, 35(2): 189-195. doi: 10.11804/NuclPhysRev.35.02.189
Citation: ZHANG Lian, PEI Xi, PI Yifei, LIU Hongdong, GUO Yi, WANG Zhi, XU Xie. IAGA Based Spot Scanning Path Optimization for Intensity Modulated Proton Therapy[J]. Nuclear Physics Review, 2018, 35(2): 189-195. doi: 10.11804/NuclPhysRev.35.02.189

基于自适应遗传算法的质子调强放疗扫描路径优化

doi: 10.11804/NuclPhysRev.35.02.189
基金项目: 国家自然科学基金资助项目(11575180);国家重点研发计划项目(2017YFC0107500)
详细信息
    作者简介:

    张练(1989-),男,河北辛集人,博士研究生,从事放射医学物理研究;E-mail:lianzhang1989@foxmail.com

    通讯作者: 徐榭,E-mail:xgxu@ustc.edu.cn
  • 中图分类号: R730.55;TP319

IAGA Based Spot Scanning Path Optimization for Intensity Modulated Proton Therapy

Funds: National Natural Science Foundation of China (11575180); National Key R&D Program of China (2017YFC0107500)
  • 摘要: 研究和开发了基于自适应遗传算法的质子调强放疗扫描路径优化方法,并在此基础上对质子调强放疗扫描时间进行初步临床评估。利用自适应遗传算法具有的较强容错性和全空间最优搜索能力开发点扫描质子调强路径优化模块,并将其集成到自主研发的放疗计划系统,选取AAPM TG-119头颈部肿瘤和前列腺肿瘤模拟例题及两例临床病例进行测试,对比扫描路径优化前后质子放疗计划扫描路径长度。对于AAPMTG-119头颈部肿瘤和前列腺肿瘤模拟例题,总扫描路径长度分别降低了27.17%和18.72%,临床头颈部肿瘤和前列腺肿瘤病例总扫描路径长度分别降低了25.36%和32.95%,优化前后路径长度降低比率与零权重扫描点及肿瘤解剖结构有关。基于自适应遗传算法的扫描路径优化方法可减少质子调强放疗计划扫描时间,从而缩短病人治疗时间,可广泛应用于质子重扫描临床技术。


    The objective of this research is to study and develop a proton spot scanning path optimization method using an improved genetic algorithm for proton therapy and to evaluate the scanning time under clinical conditions. An Improved Adaptive Genetic Algorithm (IAGA) based scanning path optimization module was developed and integrated into the home-grown treatment planning system. Four cases, including two AAPM TG-119 standard cases and two clinical cases, were selected to compare their scanning path length before and after scanning path optimization. For the two AAPM TG-119 cases, the optimized scanning path length dropped by 27.17% and 18.72%, and for the corresponding clinical cases, the optimized scanning path length dropped by 25.36% and 32.95% respectively. The performance of scanning path optimization was affected by the number of zero-weight spots and connected regions in the scanning map. IAGA based scanning path optimization can reduce the total scanning path length in intensity modulated proton therapy and, therefore, can be used in spot rescanning to accommodate organ motion.
  • [1] WEBER D C, RUTZ H P, PEDRONI E S, et al. International Journal of Radiation Oncology Biology Physics, 2005, 63(2):401.
    [2] LOMAX A J, BOEHRINGER T, CORAY A, et al. Medical Physics, 2001, 28(3):317.
    [3] LIU Hongdong, YANG Lu, PEI Xi, et al. Nuclear Physics Review, 2018, 35(01):78. (in Chinese) (刘红冬, 阳露, 裴曦, 等. 原子核物理评论, 2018, 35(01):78.)
    [4] KANAI T, KAWACHI K, KUMAMOTO Y, et al. Medical Physics, 1980, 7(4):365.
    [5] RUTZ H P, WEBER D C, GOITEIN G, et al. International Journal of Radiation Oncology Biology Physics, 2008, 71(1):220.
    [6] KOOY H M, GRASSBERGER C. The British Journal of Radiology, 2015, 88(1051):20150195.
    [7] PEDRONI E, BACHER R, BLATTMANN H, et al. Medical Physics, 1995, 22(1):37.
    [8] MARCHAND B, PRIEELS D, BAUVIR B, et al. Proceedings of EPAC. 2000:2539.
    [9] NILL S, BORTFELD T, OELFKE U. Zeitschrift Für Medizinische Physik, 2004, 14(1):35.
    [10] TROFIMOV A, BORTFELD T. Technology in Cancer Research Treatment, 2003, 2(5):437.
    [11] OELFKE U, BORTFELD T. Medical Dosimetry, 2001, 26(2):113.
    [12] LOEFFLER J S, DURANTE M. Nature Reviews Clinical Oncology, 2013, 10(7):411.
    [13] KANG J H, WILKENS J J, OELFKE U. Medical Physics, 2007, 34(9):3457.
    [14] PARDO J, DONETTI M, BOURHALEB F, et al. Medical Physics, 2009, 36(6):2043.
    [15] BORTFELD T, SCHLEGEL W, RHEIN B. Medical Physics, 1993, 20(2):311.
    [16] SOUKUP M, FIPPEL M, ALBER M. Physics in Medicine and Biology, 2005, 50(21):5089.
    [17] PFLUGFELDER D, WILKENS J J, NILL S, et al. Zeitschrift Für Medizinische Physik, 2008, 18(2):111.
    [18] COTRUTZ C, LAHANAS M, KAPPAS C, et al. Physics in Medicine and Biology, 2001, 46(8):2161.
    [19] ZHANG R, NEWHAUSER W D. Physics in Medicine and Biology, 2009, 54(6):1383.
    [20] MOON C, KIM J, CHOI G, et al. European Journal of Operational Research, 2002, 140(3):606.
    [21] EL-SAMAK A F, ASHOUR W. Journal of Artificial Intelligence and Soft Computing Research, 2015, 5(4):239.
    [22] WANG L, TANG D B. Expert Systems with Applications, 2011, 38(6):7243.
    [23] MYNAMPATI D K, YAPARPALVI R, HONG L, et al. Journal of Applied Clinical Medical Physics, 2012, 13(5):108.
    [24] STROOM J C, HEIJMEN B J M. Radiotherapy and Oncology, 2002, 64(1):75.
    [25] SCHATTI A, ZAKOVA M, MEER D, et al. Physics in Medicine and Biology, 2013, 58(23):8555.
    [26] BERNATOWICZ K, LOMAX A J, KNOPF A. Physics in Medicine and Biology, 2013, 58(22):7905.
    [27] SCHATTI A, ZAKOVA M, MEER D, et al. Physics in Medicine and Biology, 2014, 59(14):3813.
  • 加载中
计量
  • 文章访问数:  1133
  • HTML全文浏览量:  121
  • PDF下载量:  108
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-22
  • 修回日期:  2017-11-30
  • 刊出日期:  2018-06-20

基于自适应遗传算法的质子调强放疗扫描路径优化

doi: 10.11804/NuclPhysRev.35.02.189
    基金项目:  国家自然科学基金资助项目(11575180);国家重点研发计划项目(2017YFC0107500)
    作者简介:

    张练(1989-),男,河北辛集人,博士研究生,从事放射医学物理研究;E-mail:lianzhang1989@foxmail.com

    通讯作者: 徐榭,E-mail:xgxu@ustc.edu.cn
  • 中图分类号: R730.55;TP319

摘要: 研究和开发了基于自适应遗传算法的质子调强放疗扫描路径优化方法,并在此基础上对质子调强放疗扫描时间进行初步临床评估。利用自适应遗传算法具有的较强容错性和全空间最优搜索能力开发点扫描质子调强路径优化模块,并将其集成到自主研发的放疗计划系统,选取AAPM TG-119头颈部肿瘤和前列腺肿瘤模拟例题及两例临床病例进行测试,对比扫描路径优化前后质子放疗计划扫描路径长度。对于AAPMTG-119头颈部肿瘤和前列腺肿瘤模拟例题,总扫描路径长度分别降低了27.17%和18.72%,临床头颈部肿瘤和前列腺肿瘤病例总扫描路径长度分别降低了25.36%和32.95%,优化前后路径长度降低比率与零权重扫描点及肿瘤解剖结构有关。基于自适应遗传算法的扫描路径优化方法可减少质子调强放疗计划扫描时间,从而缩短病人治疗时间,可广泛应用于质子重扫描临床技术。


The objective of this research is to study and develop a proton spot scanning path optimization method using an improved genetic algorithm for proton therapy and to evaluate the scanning time under clinical conditions. An Improved Adaptive Genetic Algorithm (IAGA) based scanning path optimization module was developed and integrated into the home-grown treatment planning system. Four cases, including two AAPM TG-119 standard cases and two clinical cases, were selected to compare their scanning path length before and after scanning path optimization. For the two AAPM TG-119 cases, the optimized scanning path length dropped by 27.17% and 18.72%, and for the corresponding clinical cases, the optimized scanning path length dropped by 25.36% and 32.95% respectively. The performance of scanning path optimization was affected by the number of zero-weight spots and connected regions in the scanning map. IAGA based scanning path optimization can reduce the total scanning path length in intensity modulated proton therapy and, therefore, can be used in spot rescanning to accommodate organ motion.

English Abstract

张练, 裴曦, 皮一飞, 刘红冬, 郭翌, 汪志, 徐榭. 基于自适应遗传算法的质子调强放疗扫描路径优化[J]. 原子核物理评论, 2018, 35(2): 189-195. doi: 10.11804/NuclPhysRev.35.02.189
引用本文: 张练, 裴曦, 皮一飞, 刘红冬, 郭翌, 汪志, 徐榭. 基于自适应遗传算法的质子调强放疗扫描路径优化[J]. 原子核物理评论, 2018, 35(2): 189-195. doi: 10.11804/NuclPhysRev.35.02.189
ZHANG Lian, PEI Xi, PI Yifei, LIU Hongdong, GUO Yi, WANG Zhi, XU Xie. IAGA Based Spot Scanning Path Optimization for Intensity Modulated Proton Therapy[J]. Nuclear Physics Review, 2018, 35(2): 189-195. doi: 10.11804/NuclPhysRev.35.02.189
Citation: ZHANG Lian, PEI Xi, PI Yifei, LIU Hongdong, GUO Yi, WANG Zhi, XU Xie. IAGA Based Spot Scanning Path Optimization for Intensity Modulated Proton Therapy[J]. Nuclear Physics Review, 2018, 35(2): 189-195. doi: 10.11804/NuclPhysRev.35.02.189
参考文献 (27)

目录

    /

    返回文章
    返回