高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

重离子冷却储存环CSRm双电子复合实验研究类锂36,40Ar15+离子同位素移动

啜晓亚 黄忠魁 汶伟强 汪寒冰 许鑫 汪书兴 李冀光 豆丽君 赵冬梅 朱小龙 冒立军 殷达钰 杨建成 原有进 马新文

啜晓亚, 黄忠魁, 汶伟强, 汪寒冰, 许鑫, 汪书兴, 李冀光, 豆丽君, 赵冬梅, 朱小龙, 冒立军, 殷达钰, 杨建成, 原有进, 马新文. 重离子冷却储存环CSRm双电子复合实验研究类锂36,40Ar15+离子同位素移动[J]. 原子核物理评论, 2018, 35(2): 196-203. doi: 10.11804/NuclPhysRev.35.02.196
引用本文: 啜晓亚, 黄忠魁, 汶伟强, 汪寒冰, 许鑫, 汪书兴, 李冀光, 豆丽君, 赵冬梅, 朱小龙, 冒立军, 殷达钰, 杨建成, 原有进, 马新文. 重离子冷却储存环CSRm双电子复合实验研究类锂36,40Ar15+离子同位素移动[J]. 原子核物理评论, 2018, 35(2): 196-203. doi: 10.11804/NuclPhysRev.35.02.196
CHUAI Xiaoya, HUANG Zhongkui, WEN Weiqiang, WANG Hanbing, XU Xin, WANG Shuxing, LI Jiguang, DOU Lijun, ZHAO Dongmei, ZHU Xiaolong, MAO Lijun, YIN Dayu, YANG Jiancheng, YUAN Youjin, MA Xinwen. Investigation of Isotope Shift Effect of Li-like 36,40Ar15+ by Dielectronic Recombination Spectroscopy at the CSRm[J]. Nuclear Physics Review, 2018, 35(2): 196-203. doi: 10.11804/NuclPhysRev.35.02.196
Citation: CHUAI Xiaoya, HUANG Zhongkui, WEN Weiqiang, WANG Hanbing, XU Xin, WANG Shuxing, LI Jiguang, DOU Lijun, ZHAO Dongmei, ZHU Xiaolong, MAO Lijun, YIN Dayu, YANG Jiancheng, YUAN Youjin, MA Xinwen. Investigation of Isotope Shift Effect of Li-like 36,40Ar15+ by Dielectronic Recombination Spectroscopy at the CSRm[J]. Nuclear Physics Review, 2018, 35(2): 196-203. doi: 10.11804/NuclPhysRev.35.02.196

重离子冷却储存环CSRm双电子复合实验研究类锂36,40Ar15+离子同位素移动

doi: 10.11804/NuclPhysRev.35.02.196
基金项目: 国家重点研发计划项目(2017YFA0402300);国家自然科学基金资助项目(11320101003);中国科学院前沿科学重点研究项目(QYZDY-SSW-SLH006)
详细信息
    作者简介:

    啜晓亚(1989-),女,河北张家口人,硕士研究生;从事原子与分子物理研究;E-mail:chuaixiaoya@impcas.ac.cn

    通讯作者: 马新文,E-mail:x.ma@impcas.ac.cn
  • 中图分类号: O562.5

Investigation of Isotope Shift Effect of Li-like 36,40Ar15+ by Dielectronic Recombination Spectroscopy at the CSRm

Funds: National Key R&D Program of China (2017YFA0402300); National Natural Science Foundation of China (11320101003); Key Research Program of Frontier Sciences, CAS (QYZDY-SSW-SLH006)
  • 摘要: 配备电子冷却装置的重离子储存环为开展高电荷态离子的双电子复合(dielectronic recombination,DR)精密谱学研究提供了绝佳的实验平台。本工作在兰州重离子加速器冷却储存环主环(HIRFL-CSRm)上开展了类锂36,40Ar15+离子的双电子复合实验,实验观测了电子-离子质心系能量范围为0~35 eV的双电子复合速率系数谱。通过外推法获得了36,40Ar15+离子2s1/2→2p1/2和2s1/2→2p3/2的跃迁能量。同时利用GRASP2K程序理论计算了36,40Ar15+离子2s1/2→2p1/2和2s1/2→2p3/2跃迁的质量移动因子和场移动因子,进而得到双电子复合谱的同位素移动值。36,40Ar15+离子2s1/2→2p1/2和2s1/2→2p3/2同位素移动分别为0.861 meV和0.868 meV。它们均小于目前CSRm上双电子复合实验的实验分辨为~10 meV,进而解释了实验测量的DR谱上未能观察到同位素移动的原因。然而,高电荷态离子的同位素移动场效应与原子序数Z5成正比,因此,在重离子加速器冷却储存环实验环(HIRFL-CSRe)以及未来大型加速器——强流重离子加速器装置(HIAF)上有望通过DR精密谱学方法研究高电荷态重离子甚至放射性离子的同位素移动,进而获得相关原子核的核电荷半径等信息。


    The cooler storage ring is equipped with an electron-cooler. It is an excellent experimental platform for dielectronic recombination (DR) experiment of highly-charged ions. In this paper, the dielectronic recombination experiments of lithium-like Ar15+ ions with mass number 36 and 40 are conducted at the HIRFL-CSRm(main ring of the Cooling Storage Ring of Heavy Ion Research Facility in Lanzhou). The experimental electron-ion collision energy scale is from 0 eV to 35 eV. Extrapolation method is exploited to obtain the excitation energies of transitions 2s1/2→2p1/2 and 2s1/2→2p3/2 of the 36,40Ar15+ ions from experimental data. Meanwhile, GRASP2K program is utilized to calculate the mass shift factors and field shift factors of 36,40Ar15+ ions for 2s1/2→2p1/2 and 2s1/2→2p3/2 transitions to obtain isotope shifts in DR spectra. In theoretical calculation, isotope shifts of 36,40Ar15+ ions corresponding to 2s1/2→2p1/2 and 2s1/2→2p3/2 are 0.861 meV and 0.868 meV, respectively. They are both less than the experimental precision (~10 meV) of these dielectronic recombination experiments at the CSRm, which explains that isotope shifts cannot be distinguished from the experimental dielectronic recombination spectra. However, the field shift of highly-charged ions is proportional to Z5. In the future, the dielectronic recombination experiments of highly-charged heavy ions even radioactive ions will be conducted at the HIRFL-CSRe (experimental ring of the Cooling Storage Ring of Heavy Ion Research Facility in Lanzhou) and the future large accelerator facility——HIAF(High intensity Heavy-ion Accelerator Facility) to measure isotope shifts to obtain the nuclear charge radius information.
  • [1] KING W H. Isotope Shifts in Atomic Spectra[M]. New York:Plenum Press, 1984:54.
    [2] PÁLFFY A. Contemporary Physics, 2010, 51:471.
    [3] CAMPBELL P, MOORE I D, PEARSON M R. Progress in Particle and Nuclear Physics, 2016, 86:127.
    [4] NÖRTERSHÄUSER W, S ÁNCHEZ R, EWALD G, et al. Physical Review A, 2011, 83:012516.
    [5] NEUGART R, BILLOWES J, BISSELL M L, et al. Journal of Physics G:Nuclear and Particle Physics, 2017, 44:064002.
    [6] KOZHEDUB Y S, VOLOTKA A V, ARTEMYEV A N, et al. Physical Review A, 2010, 81:042513.
    [7] LI J, NAZÉ C, GODEFROID M, et al. Physical Review A, 2012, 86:022518.
    [8] ZUBOVA N A, KOZHEDUB Y S, SHABAEV V M, et al. Physical Review A, 2014, 90:062512.
    [9] NAZÉ C, VERDEBOUT S, RYNKUN P, et al. Atomic Data and Nuclear Data Tables, 2014, 100:1197.
    [10] FRANZKE B. Nucl Instr Meth B,1987, 24:18.
    [11] SCHUCH R, BÁRÁNY A, DANARED H, et al. Nucl Instr Meth B, 1989, 43:411.
    [12] WOLF A, BERGER J, BOCK M, et al. Zeitschrift für Physik D Atoms, Molecules and Clusters, 1991, 21:S69.
    [13] ELLIOTT S, BEIERSDORFER P, CHEN M H. Physical Review Letters, 1996, 76:1031.
    [14] NAKAMURA N, KAVANAGH A P, WATANABE H, et al. Physical Review Letters, 2008, 100:073203.
    [15] TU B, XIAO J, YAO K, et al. Physical Review A, 2015, 91:060502.
    [16] BRANDAU C, KOZHUHAROV C, MÜLLER A, et al. Physical Review Letters, 2003, 91:073202.
    [17] LESTINSKY M, LINDROTH E, ORLOV D A, et al. Physical Review Letters, 2008, 100:033001.
    [18] MÜLLER A. Advances In Atomic, Molecular, and Optical Physics, 2008, 55:293.
    [19] SCHIPPERS S. Nucl Instr Meth B, 2015, 350:61.
    [20] BRANDAU C, KOZHUHAROV C, LESTINSKY M, et al. Physica Scripta, 2015, 2015:014022.
    [21] MA X, WEN W Q, HUANG Z K, et al. Physica Scripta, 2015, 2015:014012.
    [22] BRANDAU C, KOZHUHAROV C, MÜLLER A, et al. Physica Scripta, 2013, 2013:014050.
    [23] SCHUCH R, LINDROTH E, MADZUNKOV S, et al. Physical Review Letters, 2005, 95:183003.
    [24] BRANDAU C, KOZHUHAROV C, HARMAN Z, et al. Physical Review Letters, 2008, 100:073201.
    [25] HUANG Z K, WEN W Q, XU X, et al. Nucl Instr Meth B, 2017, 408:135.
    [26] MA X, WEN W Q, ZHANG S F, et al. Nucl Instr Meth B, 2017, 408:169.
    [27] HUANG Z K, WEN W Q, WANG H B, et al. Physica Scripta, 2015, 2015:014023.
    [28] HUANG Z K, WEN W Q, XU X, et al. Journal of Physics:Conference Series, 2017, 875:012020.
    [29] HUANG Z K. Studies of DR Experiments of Li-like and Belike Argon Ions at the CSRm[D]. Lanzhou:Institute of Modern Physics, Chinese Academy of Sciences, 2017(4):25. (in Chinese) (黄忠魁. 基于重离子冷却储存环CSRm开展的类锂、类铍氩离子双电子复合实验研究[D]. 兰州:中国科学院近代物理研所, 2017(4):25.)
    [30] XU W Q. Investigations on Fine Spectroscopy of DoublyExcited States in Strongly-Correlated Ion Systems[D]. Hefei:University of Science and Technology of China, 2014(2):32. (in Chinese) (徐卫青. 强关联离子体系双激发态的精细谱学研究[D]. 合肥:中国科学技术大学, 2014(2):32.)
    [31] WEN W Q, MA X, XU W Q, et al. Nucl Instr Meth B, 2013, 317:731.
    [32] KILGUS G, HABS D, SCHWALM D, et al. Physical Review A, 1992, 46:5730.
    [33] FRICKE G, BERNHARDT C, HEILIG K, et al. Atomic Data and Nuclear Data Tables, 1995, 60:177.
    [34] SHABAEV V M. Physical Review A, 1998, 57:59.
    [35] ANGELI I, MARINOVA K P. Atomic Data and Nuclear Data Tables, 2013, 99:69.
    [36] HUANG Z K, WEN W Q, XU X, et al. Astrophysical Journal Supplement Series, 2018, 235:2.
    [37] SALOMAN E B. J Phys Chem Ref Data, 2010, 39:033101.
    [38] HENNING W F. GSI-Darmstadt. November, 2001.http://www.fair-center.eu/for-users/publications/fairpublications.html.
    [39] YANG J C, XIA J W, XIAO G Q, et al. Nucl Instr Meth B, 2013, 317:263.
    [40] MAO L J, YANG J C, XIA J W, et al. Nucl Instr Meth A, 2015, 786:91.
    [41] WU B, YANG J C, XIA J W, et al. Nucl Instr Meth A, 2018, 881:27.
  • 加载中
计量
  • 文章访问数:  1222
  • HTML全文浏览量:  190
  • PDF下载量:  134
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-14
  • 修回日期:  2018-04-20
  • 刊出日期:  2018-06-20

重离子冷却储存环CSRm双电子复合实验研究类锂36,40Ar15+离子同位素移动

doi: 10.11804/NuclPhysRev.35.02.196
    基金项目:  国家重点研发计划项目(2017YFA0402300);国家自然科学基金资助项目(11320101003);中国科学院前沿科学重点研究项目(QYZDY-SSW-SLH006)
    作者简介:

    啜晓亚(1989-),女,河北张家口人,硕士研究生;从事原子与分子物理研究;E-mail:chuaixiaoya@impcas.ac.cn

    通讯作者: 马新文,E-mail:x.ma@impcas.ac.cn
  • 中图分类号: O562.5

摘要: 配备电子冷却装置的重离子储存环为开展高电荷态离子的双电子复合(dielectronic recombination,DR)精密谱学研究提供了绝佳的实验平台。本工作在兰州重离子加速器冷却储存环主环(HIRFL-CSRm)上开展了类锂36,40Ar15+离子的双电子复合实验,实验观测了电子-离子质心系能量范围为0~35 eV的双电子复合速率系数谱。通过外推法获得了36,40Ar15+离子2s1/2→2p1/2和2s1/2→2p3/2的跃迁能量。同时利用GRASP2K程序理论计算了36,40Ar15+离子2s1/2→2p1/2和2s1/2→2p3/2跃迁的质量移动因子和场移动因子,进而得到双电子复合谱的同位素移动值。36,40Ar15+离子2s1/2→2p1/2和2s1/2→2p3/2同位素移动分别为0.861 meV和0.868 meV。它们均小于目前CSRm上双电子复合实验的实验分辨为~10 meV,进而解释了实验测量的DR谱上未能观察到同位素移动的原因。然而,高电荷态离子的同位素移动场效应与原子序数Z5成正比,因此,在重离子加速器冷却储存环实验环(HIRFL-CSRe)以及未来大型加速器——强流重离子加速器装置(HIAF)上有望通过DR精密谱学方法研究高电荷态重离子甚至放射性离子的同位素移动,进而获得相关原子核的核电荷半径等信息。


The cooler storage ring is equipped with an electron-cooler. It is an excellent experimental platform for dielectronic recombination (DR) experiment of highly-charged ions. In this paper, the dielectronic recombination experiments of lithium-like Ar15+ ions with mass number 36 and 40 are conducted at the HIRFL-CSRm(main ring of the Cooling Storage Ring of Heavy Ion Research Facility in Lanzhou). The experimental electron-ion collision energy scale is from 0 eV to 35 eV. Extrapolation method is exploited to obtain the excitation energies of transitions 2s1/2→2p1/2 and 2s1/2→2p3/2 of the 36,40Ar15+ ions from experimental data. Meanwhile, GRASP2K program is utilized to calculate the mass shift factors and field shift factors of 36,40Ar15+ ions for 2s1/2→2p1/2 and 2s1/2→2p3/2 transitions to obtain isotope shifts in DR spectra. In theoretical calculation, isotope shifts of 36,40Ar15+ ions corresponding to 2s1/2→2p1/2 and 2s1/2→2p3/2 are 0.861 meV and 0.868 meV, respectively. They are both less than the experimental precision (~10 meV) of these dielectronic recombination experiments at the CSRm, which explains that isotope shifts cannot be distinguished from the experimental dielectronic recombination spectra. However, the field shift of highly-charged ions is proportional to Z5. In the future, the dielectronic recombination experiments of highly-charged heavy ions even radioactive ions will be conducted at the HIRFL-CSRe (experimental ring of the Cooling Storage Ring of Heavy Ion Research Facility in Lanzhou) and the future large accelerator facility——HIAF(High intensity Heavy-ion Accelerator Facility) to measure isotope shifts to obtain the nuclear charge radius information.

English Abstract

啜晓亚, 黄忠魁, 汶伟强, 汪寒冰, 许鑫, 汪书兴, 李冀光, 豆丽君, 赵冬梅, 朱小龙, 冒立军, 殷达钰, 杨建成, 原有进, 马新文. 重离子冷却储存环CSRm双电子复合实验研究类锂36,40Ar15+离子同位素移动[J]. 原子核物理评论, 2018, 35(2): 196-203. doi: 10.11804/NuclPhysRev.35.02.196
引用本文: 啜晓亚, 黄忠魁, 汶伟强, 汪寒冰, 许鑫, 汪书兴, 李冀光, 豆丽君, 赵冬梅, 朱小龙, 冒立军, 殷达钰, 杨建成, 原有进, 马新文. 重离子冷却储存环CSRm双电子复合实验研究类锂36,40Ar15+离子同位素移动[J]. 原子核物理评论, 2018, 35(2): 196-203. doi: 10.11804/NuclPhysRev.35.02.196
CHUAI Xiaoya, HUANG Zhongkui, WEN Weiqiang, WANG Hanbing, XU Xin, WANG Shuxing, LI Jiguang, DOU Lijun, ZHAO Dongmei, ZHU Xiaolong, MAO Lijun, YIN Dayu, YANG Jiancheng, YUAN Youjin, MA Xinwen. Investigation of Isotope Shift Effect of Li-like 36,40Ar15+ by Dielectronic Recombination Spectroscopy at the CSRm[J]. Nuclear Physics Review, 2018, 35(2): 196-203. doi: 10.11804/NuclPhysRev.35.02.196
Citation: CHUAI Xiaoya, HUANG Zhongkui, WEN Weiqiang, WANG Hanbing, XU Xin, WANG Shuxing, LI Jiguang, DOU Lijun, ZHAO Dongmei, ZHU Xiaolong, MAO Lijun, YIN Dayu, YANG Jiancheng, YUAN Youjin, MA Xinwen. Investigation of Isotope Shift Effect of Li-like 36,40Ar15+ by Dielectronic Recombination Spectroscopy at the CSRm[J]. Nuclear Physics Review, 2018, 35(2): 196-203. doi: 10.11804/NuclPhysRev.35.02.196
参考文献 (41)

目录

    /

    返回文章
    返回