高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原子核放射性对核对称能的约束(英文)

许昌

许昌. 原子核放射性对核对称能的约束(英文)[J]. 原子核物理评论, 2017, 34(1): 46-50. doi: 10.11804/NuclPhysRev.34.01.046
引用本文: 许昌. 原子核放射性对核对称能的约束(英文)[J]. 原子核物理评论, 2017, 34(1): 46-50. doi: 10.11804/NuclPhysRev.34.01.046
XU Chang. Nuclear Symmetry Energy Constrained by Nuclear Radioactivities[J]. Nuclear Physics Review, 2017, 34(1): 46-50. doi: 10.11804/NuclPhysRev.34.01.046
Citation: XU Chang. Nuclear Symmetry Energy Constrained by Nuclear Radioactivities[J]. Nuclear Physics Review, 2017, 34(1): 46-50. doi: 10.11804/NuclPhysRev.34.01.046

原子核放射性对核对称能的约束(英文)

doi: 10.11804/NuclPhysRev.34.01.046
基金项目: 国家自然科学基金资助项目(11575082,11235001,11175085)
详细信息
  • 中图分类号: O571.6

Nuclear Symmetry Energy Constrained by Nuclear Radioactivities

Funds: National Natural Science Foundation of China (11575082, 11235001, 11175085)
  • 摘要: 核对称能的密度依赖性对于原子核物理和天体物理中的许多问题很重要。基于密度依赖的结团模型,奇特的结团放射性被用来约束核对称能及其斜率的大小。在密度依赖的结团模型中,清楚地给出了结团放射性子核208Pb的中子皮大小与对称能的斜率参数Lρ0) 之间的关联。发现从M3Y核子-核子相互作用得到的结团-208Pb 同位旋矢量势对于对称能的斜率参数Lρ0) 非常重要。基于结团放射性实验数据和新的208Pb 的中子皮大小实验数据,成功得到对称能的斜率参数Lρ0) 的大小。也讨论了利用质子放射性数据提取的斜率参数Lρ0)。


    The density-dependence of symmetry energy is of particular importance to many problems in nuclear physics and astrophysics. Exotic cluster radioactivity is proposed to constrain the density slope of symmetry energy L(ρ0) by using the density-dependent cluster model (DDCM) where the cluster radioactivity serves as a link between the neutron skin thickness of 208Pb and the density slope L(ρ0). The isovector part of cluster-208Pb potential constructed from the M3Y nucleon-nucleon interaction is found to be very important in determining the density slope parameter L(ρ0). The correlation between the neutron skin thickness of 208Pb and the density slope parameter are obtained from cluster radioactivities around 208Pb with measured data. The constraint of L(ρ0) from proton radioactivity is also discussed.
  • [1] DANIELEWICZ P, LACEY R, LYNCH W G. Science, 2000, 298: 1592.
    [2] LATTIMER J M, PRAKASH M. Science, 2004, 304: 536.
    [3] STEINER A W, PRAKASH M, LATTIMER J M, et al. Phys Rep, 2005, 411: 325.
    [4] LI B A, CHEN L W, KO C M. Phys Rep, 2008, 464: 113.
    [5] LIU T X, LYNCH W G, SHOWALTER R H, et al. Phys Rev C, 2012, 86: 024605.
    [6] WARDA M, VIÑAS X, ROCA-MAZA X, et al. Phys Rev C, 2009, 80: 024316; CENTELLES M, et al. Phys Rev Lett, 2009, 102: 122502.
    [7] SWIATECKIWJ, TRZCINSKA A, JASTRZEBSKI J. Phys Rev C, 2005, 71: 047301.
    [8] SUMIYOSHI K, TOKI H. ApJ, 1994, 422: 700.
    [9] MÖOLLER P, MYERSWD, SAGAWA H, YOSHIDA S. Phys Rev Lett, 2012, 108: 052501.
    [10] CHEN L W, KO C M, LI B A. Phys Rev Lett, 2005, 94: 032701.
    [11] VIDAÑA I, POLLS A, PROVIDÊNCIA C. Phys Rev C, 2011, 84: 062801(R).
    [12] NAZAREWICZ W, REINHARD P G, SATU LA W, et al. Eur Phys J A, 2014, 50: 20.
    [13] KLIMKIEWICZ A, PAAR N, ADRICH P, et al. Phys Rev C, 2007, 76: 051603(R).
    [14] KOHLEY Z, MAY L W, WUENSCHEL S, et al. Phys Rev C, 2010, 82: 064601.
    [15] CARBONE A, COLÖ G, BRACCO A, et al. Phys Rev C, 2010, 81: 041301(R).
    [16] KHOA D T, LOC B M, THANG D N. Eur Phys J A, 2014, 50: 34.
    [17] YONG Gaochan, LI Bao-an, CHEN Liewen. Nuclear Physics Review, 2009, 26(2): 85. (in Chinese)
    [18] WANG Hongyuan, XU Chang. Nuclear Physics Review, 2016, 33: 1. (in Chinese)
    [19] WEN Dehua, JING Zhenzhen. Nuclear Physics Review, 2015, 32: 161. (in Chinese)
    [20] WU Qianghua, ZHANG Yingxun, XIAO Zhigang, et al. Nuclear Physics Review, 2016, 33: 251. (in Chinese)
    [21] BROWN B A. Phys Rev Lett, 2000, 85: 5296.
    [22] ABRAHAMYAN S, AHMED Z, ALBATAINEH H, et al. Phys Rev Lett, 2012, 108: 112502.
    [23] HOROWITZ C, AHMED Z, JEN C M, et al. Phys Rev C, 2012, 85: 032501.
    [24] FATTOYEV F J, PIEKAREWICZ J. Phys Rev Lett, 2013, 111: 162501.
    [25] TARBERT C M, WATTS D P, GLAZIER D I, et al. Phys Rev Lett, 2014, 112: 242502.
    [26] RÖOPKE G, SCHUCK P, FUNAKI Y, et al. Phys Rev C, 2014, 90: 034304.
    [27] XU C, REN Z, RÖOPKE G, et al. Phys Rev C, 2016, 93: 011306(R).
    [28] XU C, REN Z, LIU J. Phys Rev C, 2014, 90: 064310.
    [29] REN Z, XU C, WANG Z. Phys Rev C, 2004, 70: 034304.
    [30] XU C, REN Z. Phys Rev C, 2006, 73: 041301(R); Phys Rev C, 2006, 74: 014304.
    [31] BERTSCH G, BORYSOWICZ J, MCMANUS H, et al. Nucl Phys A, 1977, 284: 399.
    [32] KOBOS A M, BROWN B A, HODGSON P E, et al. Nucl Phys A, 1982, 384: 65.
    [33] SATCHLER G R, LOVE W G. Phys Reps, 1979, 55: 183.
    [34] WALECKA J D. Theoretical Nuclear Physics and Subnuclear Physics[M]. Oxford: Oxford Univ Press, 1995.
    [35] PRESTON M A, BHADURI R K. Structure of the Nucleus[ M]. Boston: Addison-Wesley Publishing Inc, (1975).
    [36] XU C, LI B A, CHEN L W. Phys Rev C, 2010, 87: 054607.
    [37] XU C, LI B A, CHEN L W. Nucl Phys A, 2011, 865: 1.
    [38] WAN N, XU C, REN Z. Phys Rev C, 2016, 94: 044322.
    [39] DELION D S, SANDULESCU A, GREINER W. Phys Rev C, 2004, 69: 044318.
    [40] ISMAIL M, ELLITHI A Y, BOTROS M M, et al. Phys Rev C, 2012, 86: 044317.
    [41] REN Y, REN Z. Phys Rev C, 2012, 85: 044608; Phys Rev C, 2014, 89: 064603.
    [42] TOHSAKI A, HORIUCHI H, SCHUCK P, et al. Phys Rev Lett, 2001, 87: 192501.
  • 加载中
计量
  • 文章访问数:  1286
  • HTML全文浏览量:  126
  • PDF下载量:  151
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-10
  • 刊出日期:  2017-03-20

原子核放射性对核对称能的约束(英文)

doi: 10.11804/NuclPhysRev.34.01.046
    基金项目:  国家自然科学基金资助项目(11575082,11235001,11175085)
  • 中图分类号: O571.6

摘要: 核对称能的密度依赖性对于原子核物理和天体物理中的许多问题很重要。基于密度依赖的结团模型,奇特的结团放射性被用来约束核对称能及其斜率的大小。在密度依赖的结团模型中,清楚地给出了结团放射性子核208Pb的中子皮大小与对称能的斜率参数Lρ0) 之间的关联。发现从M3Y核子-核子相互作用得到的结团-208Pb 同位旋矢量势对于对称能的斜率参数Lρ0) 非常重要。基于结团放射性实验数据和新的208Pb 的中子皮大小实验数据,成功得到对称能的斜率参数Lρ0) 的大小。也讨论了利用质子放射性数据提取的斜率参数Lρ0)。


The density-dependence of symmetry energy is of particular importance to many problems in nuclear physics and astrophysics. Exotic cluster radioactivity is proposed to constrain the density slope of symmetry energy L(ρ0) by using the density-dependent cluster model (DDCM) where the cluster radioactivity serves as a link between the neutron skin thickness of 208Pb and the density slope L(ρ0). The isovector part of cluster-208Pb potential constructed from the M3Y nucleon-nucleon interaction is found to be very important in determining the density slope parameter L(ρ0). The correlation between the neutron skin thickness of 208Pb and the density slope parameter are obtained from cluster radioactivities around 208Pb with measured data. The constraint of L(ρ0) from proton radioactivity is also discussed.

English Abstract

许昌. 原子核放射性对核对称能的约束(英文)[J]. 原子核物理评论, 2017, 34(1): 46-50. doi: 10.11804/NuclPhysRev.34.01.046
引用本文: 许昌. 原子核放射性对核对称能的约束(英文)[J]. 原子核物理评论, 2017, 34(1): 46-50. doi: 10.11804/NuclPhysRev.34.01.046
XU Chang. Nuclear Symmetry Energy Constrained by Nuclear Radioactivities[J]. Nuclear Physics Review, 2017, 34(1): 46-50. doi: 10.11804/NuclPhysRev.34.01.046
Citation: XU Chang. Nuclear Symmetry Energy Constrained by Nuclear Radioactivities[J]. Nuclear Physics Review, 2017, 34(1): 46-50. doi: 10.11804/NuclPhysRev.34.01.046
参考文献 (42)

目录

    /

    返回文章
    返回