高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

几种不同材料降能器对200 MeV质子放疗特性的蒙特卡罗模拟

刘红冬 阳露 裴曦 陈志 徐榭

刘红冬, 阳露, 裴曦, 陈志, 徐榭. 几种不同材料降能器对200 MeV质子放疗特性的蒙特卡罗模拟[J]. 原子核物理评论, 2018, 35(1): 78-84. doi: 10.11804/NuclPhysRev.35.01.078
引用本文: 刘红冬, 阳露, 裴曦, 陈志, 徐榭. 几种不同材料降能器对200 MeV质子放疗特性的蒙特卡罗模拟[J]. 原子核物理评论, 2018, 35(1): 78-84. doi: 10.11804/NuclPhysRev.35.01.078
LIU Hongdong, YANG Lu, PEI Xi, CHEN Zhi, XU Xiey. Monte Carlo Study on the Performance of 200 MeV Proton Therapy Energy Degraders Made of Different Materials[J]. Nuclear Physics Review, 2018, 35(1): 78-84. doi: 10.11804/NuclPhysRev.35.01.078
Citation: LIU Hongdong, YANG Lu, PEI Xi, CHEN Zhi, XU Xiey. Monte Carlo Study on the Performance of 200 MeV Proton Therapy Energy Degraders Made of Different Materials[J]. Nuclear Physics Review, 2018, 35(1): 78-84. doi: 10.11804/NuclPhysRev.35.01.078

几种不同材料降能器对200 MeV质子放疗特性的蒙特卡罗模拟

doi: 10.11804/NuclPhysRev.35.01.078
基金项目: 国家自然科学基金资助项目(11575180);国家重点研发计划(2017YFC0107500)
详细信息
    作者简介:

    刘红冬(1991-),男,湖南衡阳人,在读博士,从事粒子放疗技术蒙特卡罗研究;E-mail:liuhd073@mail.ustc.edu.cn

    通讯作者: 徐榭,E-mail:xgxu@ustc.edu.cn。
  • 中图分类号: O572.21+1

Monte Carlo Study on the Performance of 200 MeV Proton Therapy Energy Degraders Made of Different Materials

Funds: National Natural Science Foundation of China (11575180); National Key R&D Program of China (2017YFC0107500)
  • 摘要: 能量选择系统是医用质子回旋加速器放疗系统中极其重要的部件,主要用来调节质子束能量,使得从加速器出来的质子束能量满足临床治疗计划的要求。能量选择系统的核心部件是降能器,目前降能器大多采用石墨作为降能材料。近些年提出用铍或者碳化硼替代石墨作为降能器材料的设想,以期望提高质子束流的传输效率。利用蒙特卡罗软件TOPAS模拟200 MeV质子在石墨、铍和碳化硼三种不同材料多楔形结构降能器中的输运过程,统计了穿过降能器后质子以及产生的次级中子的能量通量,并计算了质子束流在穿过不同降能器后的能量分散,据此得到了三种材料降能器厚度与质子能量之间的关系曲线,同时也分析了不同降能器对质子束传输效率的影响以及次级中子产额的情况。通过对比发现,三种材料降能器对束流的能量发散效果相当,而使用铍或者碳化硼都能提高束流传输效率,尤其铍降能器的性能较优。但铍和碳化硼与质子相互作用会产生更多的次级中子,因此在实际应用时需要更多地考虑次级中子对设备的辐射防护。


    Energy selection system (ESS) is an important component for medical proton cyclotron system. It has been widely used to modulate the proton energy in accordance with treatment requirements. ESS consists of the energy degrader which was mostly made of graphite. Recent years, to improve the transmission efficiency of the proton beams, beryllium and boron carbide have been proposed to substitute the graphite. In this work, the Monte Carlo code, TOPAS, was used to simulate the transport process of 200 MeV proton beams traversing the multi-wedge energy degrader made of graphite, beryllium and boron carbide, respectively. Energy fluxes of the protons and secondary neutrons after degrader, as well as the energy dispersion of the degraded proton beams, were calculated. It is found that the energy dissipation effect is nearly identical for all three kinds of degrader material, but using the beryllium or even boron carbide can improve the proton transmission efficiency. However, more secondary neutrons would be produced when proton beams interact with the beryllium and boron carbide, suggesting the need of additional consideration for radiation shielding to devices.
  • [1] PAGANETTI H, Proton Therapy Physics[M]. Boca Raton:CRC Press, 2012:20.
    [2] LIU SHIYAO, Proton and Heavy Ion Therapy and the Devices[M]. Beijing:Science Press, 2012:17. (in chinese) (刘世耀. 质子和重离子治疗及其装置[M]. 北京:科学出版社, 2012:17.)
    [3] LUNDKVIST J, EKMAN M, ERICSSON S R, et al. Acta oncologica, 2005, 44(8):850.
    [4] JERMANN M. International Journal of Particle Therapy, 2015, 2(1):50.
    [5] ROSSI JR C J. Intensity-Modulated Proton Beam Therapy of Prostate Cancer-History, Results, and Future Directions[M]//WONG J, SCHUTHEISS T, RADANY E. Advances in Radiation Oncology, Berlin:Springer International Publishing, 2017:109.
    [6] JONGEN Y. Review on Cyclotrons for Cancer Therapy[C]. Proceedings of Cyclotrons 2010:58.
    [7] WIESZCZYCKA W, SCHARF W H. Proton radiotherapy accelerators[M]. Singapore:World Scientific, 2001:17.
    [8] KOSTROMIN S, GURSKY S, KARAMYSHEVA G, et al. Development of the IBA-JINR cyclotron C235-V3 for Dimitrovgrad Hospital Center of the Proton Therapy[C]. Proc of RUPAC, 2012:221.
    [9] LEE S K, LEE H R, KIM K R, et al. Characteristic Experimentations of Degrader and Scatterer at MC-50 Cyclotron[C]. Particle Accelerator Conference, PAC 2005, Proceedings of the IEEE, 2005:1356.
    [10] SCHILLO M, GEISLER A, HOBL A, et al. Compact Superconducting 250 MeV Proton Cyclotron for the PSI Proscan Proton Therapy Project[C]. AIP Conference Proceedings, 2001, 600(1):37.
    [11] PEDRONI E, BACHER R, BLATTMANN H, et al. Medical Physics, 1995, 22(1):37.
    [12] REIST H, DOLLING R, GRAF M, et al. A Fast Degrader to set the Energies for the Application of the Depth Dose in Proton Therapy[C]. Scientific and Technical Report 2001, 2002:20.
    [13] CASCIO E W, SARKAR S. A Continuously Variable Water Beam Degrader for the Radiation Test Beamline at the Francis H. Burr Proton Therapy Center[C]. Radiation Effects Data Workshop, IEEE, 2007:30.
    [14] OWEN H, HOLDER D, ALONSO J, et al. International Journal of Modern Physics A, 2014, 29(14):1441002.
    [15] STICHELBAUT F, JONGEN Y. Properties of an energy degrader for light ions[C]. Progress in Nuclear Science and Technology, 2014, 4:272.
    [16] BRENNSETER J A. The Influence of the Energy Degrader Material for a Therapeutical Proton Beam[D]. Norway:Norwegian University of Science and Technology, 2015:5.
    [17] ANFEROV V. Nucl Instr Meth A, 2003, 496(1):222.
    [18] VAN GOETHEM M J, VAN D M R, REIST H W, et al. Physics in Medicine and Biology, 2009, 54(54):5831.
    [19] GERBERSHAGEN A, BAUMGARTEN C, KISELEV D, et al. Physics in Medicine and Biology, 2016, 61(14):N337.
    [20] PAGANETTI H, JIANG H, LEE S Y, et al. Medical Physics, 2004, 31(7):2107.
    [21] PERL J, SHIN J, SCHUMANN J, et al. Medical Physics, 2012, 39(11):6818.
    [22] TESTA M, SCHUMANN J, LU H M, et al. Medical Physics, 2013, 40(12):121719.
    [23] PERL J. User Guide for TOPAS Version 3.0(rev. 201605-22b). 2016:72.
    [24] ASO T, KIMURA A, TANAKA S, et al. IEEE transactions on Nuclear Science, 2005, 52(4):896.
    [25] Geant4 Collaboration. geant4 User's Guide for Application Developers[EB/OL].[2014-12-5].
    [26] JARLSKOG C Z, PAGANETTI H. IEEE Transactions on Nuclear Science, 2008, 55(3):1018.
    [27] PAGANETTI H. Physics in Medicine and Biology, 2012, 57(11):R99.
    [28] URBAN T, KLUSON J. Radioprotection, 2012, 47(04):583.
  • 加载中
计量
  • 文章访问数:  1513
  • HTML全文浏览量:  217
  • PDF下载量:  207
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-17
  • 修回日期:  2017-06-13
  • 刊出日期:  2018-03-20

几种不同材料降能器对200 MeV质子放疗特性的蒙特卡罗模拟

doi: 10.11804/NuclPhysRev.35.01.078
    基金项目:  国家自然科学基金资助项目(11575180);国家重点研发计划(2017YFC0107500)
    作者简介:

    刘红冬(1991-),男,湖南衡阳人,在读博士,从事粒子放疗技术蒙特卡罗研究;E-mail:liuhd073@mail.ustc.edu.cn

    通讯作者: 徐榭,E-mail:xgxu@ustc.edu.cn。
  • 中图分类号: O572.21+1

摘要: 能量选择系统是医用质子回旋加速器放疗系统中极其重要的部件,主要用来调节质子束能量,使得从加速器出来的质子束能量满足临床治疗计划的要求。能量选择系统的核心部件是降能器,目前降能器大多采用石墨作为降能材料。近些年提出用铍或者碳化硼替代石墨作为降能器材料的设想,以期望提高质子束流的传输效率。利用蒙特卡罗软件TOPAS模拟200 MeV质子在石墨、铍和碳化硼三种不同材料多楔形结构降能器中的输运过程,统计了穿过降能器后质子以及产生的次级中子的能量通量,并计算了质子束流在穿过不同降能器后的能量分散,据此得到了三种材料降能器厚度与质子能量之间的关系曲线,同时也分析了不同降能器对质子束传输效率的影响以及次级中子产额的情况。通过对比发现,三种材料降能器对束流的能量发散效果相当,而使用铍或者碳化硼都能提高束流传输效率,尤其铍降能器的性能较优。但铍和碳化硼与质子相互作用会产生更多的次级中子,因此在实际应用时需要更多地考虑次级中子对设备的辐射防护。


Energy selection system (ESS) is an important component for medical proton cyclotron system. It has been widely used to modulate the proton energy in accordance with treatment requirements. ESS consists of the energy degrader which was mostly made of graphite. Recent years, to improve the transmission efficiency of the proton beams, beryllium and boron carbide have been proposed to substitute the graphite. In this work, the Monte Carlo code, TOPAS, was used to simulate the transport process of 200 MeV proton beams traversing the multi-wedge energy degrader made of graphite, beryllium and boron carbide, respectively. Energy fluxes of the protons and secondary neutrons after degrader, as well as the energy dispersion of the degraded proton beams, were calculated. It is found that the energy dissipation effect is nearly identical for all three kinds of degrader material, but using the beryllium or even boron carbide can improve the proton transmission efficiency. However, more secondary neutrons would be produced when proton beams interact with the beryllium and boron carbide, suggesting the need of additional consideration for radiation shielding to devices.

English Abstract

刘红冬, 阳露, 裴曦, 陈志, 徐榭. 几种不同材料降能器对200 MeV质子放疗特性的蒙特卡罗模拟[J]. 原子核物理评论, 2018, 35(1): 78-84. doi: 10.11804/NuclPhysRev.35.01.078
引用本文: 刘红冬, 阳露, 裴曦, 陈志, 徐榭. 几种不同材料降能器对200 MeV质子放疗特性的蒙特卡罗模拟[J]. 原子核物理评论, 2018, 35(1): 78-84. doi: 10.11804/NuclPhysRev.35.01.078
LIU Hongdong, YANG Lu, PEI Xi, CHEN Zhi, XU Xiey. Monte Carlo Study on the Performance of 200 MeV Proton Therapy Energy Degraders Made of Different Materials[J]. Nuclear Physics Review, 2018, 35(1): 78-84. doi: 10.11804/NuclPhysRev.35.01.078
Citation: LIU Hongdong, YANG Lu, PEI Xi, CHEN Zhi, XU Xiey. Monte Carlo Study on the Performance of 200 MeV Proton Therapy Energy Degraders Made of Different Materials[J]. Nuclear Physics Review, 2018, 35(1): 78-84. doi: 10.11804/NuclPhysRev.35.01.078
参考文献 (28)

目录

    /

    返回文章
    返回