高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

核子与核力决定的核形状(英文)

T. Otsuka Y. Tsunoda T. Togashi N. Shimizu T. Abe

T. Otsuka, Y. Tsunoda, T. Togashi, N. Shimizu, T. Abe. 核子与核力决定的核形状(英文)[J]. 原子核物理评论, 2018, 35(4): 356-361. doi: 10.11804/NuclPhysRev.35.04.356
引用本文: T. Otsuka, Y. Tsunoda, T. Togashi, N. Shimizu, T. Abe. 核子与核力决定的核形状(英文)[J]. 原子核物理评论, 2018, 35(4): 356-361. doi: 10.11804/NuclPhysRev.35.04.356
T. Otsuka, Y. Tsunoda, T. Togashi, N. Shimizu, T. Abe. Nuclear Shapes Made Up by Nucleons and Nuclear Forces[J]. Nuclear Physics Review, 2018, 35(4): 356-361. doi: 10.11804/NuclPhysRev.35.04.356
Citation: T. Otsuka, Y. Tsunoda, T. Togashi, N. Shimizu, T. Abe. Nuclear Shapes Made Up by Nucleons and Nuclear Forces[J]. Nuclear Physics Review, 2018, 35(4): 356-361. doi: 10.11804/NuclPhysRev.35.04.356

核子与核力决定的核形状(英文)

doi: 10.11804/NuclPhysRev.35.04.356
基金项目: 日本MEXT和JICFuS超高性能计算革新研究战略计划(宇宙与物质起源)及"优先问题的K后超算"(宇宙演化和基本定律阐明)项目资助
详细信息
  • 中图分类号: O571.6

Nuclear Shapes Made Up by Nucleons and Nuclear Forces

Funds: HPCI Strategic Program (The origin of matter and the universe) and "Priority Issue on Post-K computer" (Elucidation of the Fundamental Laws and Evolution of the Universe) from MEXT and JICFuS.
  • 摘要: 讨论了最近提出的作为量子多体系统重要潜在机制之一的量子自组织,原子核无疑是最好的实例。由于原子核内核子的单粒子和集体运动共存,它们的相互制约决定了核结构。集体模式因其驱动力,如使椭球形变的四极力及其阻力达到平衡形成,而单粒子能量就是产生阻力的一种根源。当存在较大单粒子能隙时,相关的集体运动更易受到阻碍。因此,一般认为,单粒子运动和集体运动是相互对抗的"天敌"。然而,由于核力的多样和复杂性,单极相互作用使单粒子能量改变也能减小其对集体运动的阻碍而加强集体模式,该现象将通过Zr同位素实例加以说明。这就导致了量子自组织的产生:单粒子能量由两种量子液体(质子和中子)和控制阻力的单极相互作用自组织。于是,不同于朗道费米液体理论的结论,原子核不一定像填装了自由核子的刚性瓶。Ⅱ型壳演化即是包含跨准幻壳能隙激发的直观实例。在重核中,量子自组织因其轨道和核子数更多而更为重要。


    We discuss the quantum self-organization introduced recently as one of the major underlying mechanisms of the quantum many-body systems. Atomic nuclei are actually a good example, because two types of the motion of nucleons, single-particle states and collective modes, interplay in determining their structure. The collective mode appears as a consequence of the balance between the effect of the mode-driving force (e.g., quadrupole force for the ellipsoidal deformation) and the resistance power against it. The single-particle energies are one of the sources to bring about such resistance power:a coherent collective motion is more hindered by larger spacings between relevant single particle states. Thus, the single-particle state and the collective mode are "enemies" against each other in the usual understanding. However, the nuclear forces are rich and complicated enough so as to enhance relevant collective mode by reducing the resistance power by changing single-particle energies for each eigenstate through monopole interactions. This will be demonstrated with the concrete example taken from Zr isotopes. In this way, the quantum self-organization occurs:single-particle energies can be self-organized by (i) two quantum liquids, e.g., protons and neutrons, (ii) monopole interaction (to control resistance). Thus, atomic nuclei are not necessarily like simple rigid vases containing almost free nucleons, in contrast to the naïve Fermi liquid picture a la Landau. Type Ⅱ shell evolution is considered to be a simple visible case involving excitations across a (sub)magic gap. The quantum self-organization becomes more important in heavier nuclei where the number of active orbits and the number of active nucleons are larger.
  • [1] MAYER M G. Phys Rev, 1949, 75:1969.
    [2] HAXEL O, JENSEN J H D, SUESS H E. Phys Rev, 1949, 75:1766.
    [3] MAYER M G, JENSEN J H D. Elementary Theory of Nuclear Shell Structure[M]. New York:Wiley, 1955.
    [4] DE SHALIT A, TALMI I. Nuclear Shell Theory[M]. New York:Dover, 2004.
    [5] HEYDE K L G. The Nuclear Shell Model[M]. Berlin:Springer, 1990.
    [6] CAURIER E, MARTÍNEZ-PINEDO G, NPWACKI F, et al. Rev Mod Phys, 2005, 77:427.
    [7] RAINWATER J. Phys Rev, 1950, 79:432.
    [8] BOHR A. Mat Fys Medd Dan Vid Selsk, 1952, 26:1.
    [9] BOHR A, MOTTELSON B R. Mat Fys Medd Dan Vid Selsk, 1953, 27:1.
    [10] BOHR A, MOTTELSON B R. Nuclear Structure Vol 2[M]. New York:Benjamin, 1975.
    [11] SCHAEFER T. Nucl Phys A, 2014, 928:180.
    [12] TOGASHI T, TSUNODA Y, OTSUKA T, et al. Phys Rev Lett, 2016, 117:172502.
    [13] KREMER C, ASLANIDOU S, BASSAUER S, et al. Phys Rev Lett, 2016, 117:172503.
    [14] NNDC. Nudat 2, 2016.
    [15] OUSUKA T. Prog Part Nucl Phys, 2001, 47:319.
    [16] SHIMIZU N. Prog Theor Exp Phys, 2012, 2012:01A205.
    [17] JAHN H A, TELLER E. Proc R Soc A, 1937, 161:220.
    [18] OTSUKA T, SUZUKI T, FUJIMOTO R, et al. Phys Rev Lett, 2005, 95:232502.
    [19] OTSUKA T, HONMA M, UTSUNO Y, et al. Phys Rev Lett, 2010, 104:012501.
    [20] OTSUKA T, TSUNODA Y. J Phys G:Nucl Part, 2016, 43:024009.
    [21] TSUNODA Y, OTSUKA T, SHIMIZU N, et al. Phys Rev C, 2014, 89:031301(R).
    [22] MORALES A, BENZONI G, WATANABE H et al. Phys Lett B, 2017, 765:328.
    [23] LEONI S, FORNAL B, MÄRGINEAN N, et al. Phys Rev Lett, 2017, 118:162502.
  • 加载中
计量
  • 文章访问数:  1771
  • HTML全文浏览量:  298
  • PDF下载量:  135
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-10
  • 刊出日期:  2020-05-03

核子与核力决定的核形状(英文)

doi: 10.11804/NuclPhysRev.35.04.356
    基金项目:  日本MEXT和JICFuS超高性能计算革新研究战略计划(宇宙与物质起源)及"优先问题的K后超算"(宇宙演化和基本定律阐明)项目资助
  • 中图分类号: O571.6

摘要: 讨论了最近提出的作为量子多体系统重要潜在机制之一的量子自组织,原子核无疑是最好的实例。由于原子核内核子的单粒子和集体运动共存,它们的相互制约决定了核结构。集体模式因其驱动力,如使椭球形变的四极力及其阻力达到平衡形成,而单粒子能量就是产生阻力的一种根源。当存在较大单粒子能隙时,相关的集体运动更易受到阻碍。因此,一般认为,单粒子运动和集体运动是相互对抗的"天敌"。然而,由于核力的多样和复杂性,单极相互作用使单粒子能量改变也能减小其对集体运动的阻碍而加强集体模式,该现象将通过Zr同位素实例加以说明。这就导致了量子自组织的产生:单粒子能量由两种量子液体(质子和中子)和控制阻力的单极相互作用自组织。于是,不同于朗道费米液体理论的结论,原子核不一定像填装了自由核子的刚性瓶。Ⅱ型壳演化即是包含跨准幻壳能隙激发的直观实例。在重核中,量子自组织因其轨道和核子数更多而更为重要。


We discuss the quantum self-organization introduced recently as one of the major underlying mechanisms of the quantum many-body systems. Atomic nuclei are actually a good example, because two types of the motion of nucleons, single-particle states and collective modes, interplay in determining their structure. The collective mode appears as a consequence of the balance between the effect of the mode-driving force (e.g., quadrupole force for the ellipsoidal deformation) and the resistance power against it. The single-particle energies are one of the sources to bring about such resistance power:a coherent collective motion is more hindered by larger spacings between relevant single particle states. Thus, the single-particle state and the collective mode are "enemies" against each other in the usual understanding. However, the nuclear forces are rich and complicated enough so as to enhance relevant collective mode by reducing the resistance power by changing single-particle energies for each eigenstate through monopole interactions. This will be demonstrated with the concrete example taken from Zr isotopes. In this way, the quantum self-organization occurs:single-particle energies can be self-organized by (i) two quantum liquids, e.g., protons and neutrons, (ii) monopole interaction (to control resistance). Thus, atomic nuclei are not necessarily like simple rigid vases containing almost free nucleons, in contrast to the naïve Fermi liquid picture a la Landau. Type Ⅱ shell evolution is considered to be a simple visible case involving excitations across a (sub)magic gap. The quantum self-organization becomes more important in heavier nuclei where the number of active orbits and the number of active nucleons are larger.

English Abstract

T. Otsuka, Y. Tsunoda, T. Togashi, N. Shimizu, T. Abe. 核子与核力决定的核形状(英文)[J]. 原子核物理评论, 2018, 35(4): 356-361. doi: 10.11804/NuclPhysRev.35.04.356
引用本文: T. Otsuka, Y. Tsunoda, T. Togashi, N. Shimizu, T. Abe. 核子与核力决定的核形状(英文)[J]. 原子核物理评论, 2018, 35(4): 356-361. doi: 10.11804/NuclPhysRev.35.04.356
T. Otsuka, Y. Tsunoda, T. Togashi, N. Shimizu, T. Abe. Nuclear Shapes Made Up by Nucleons and Nuclear Forces[J]. Nuclear Physics Review, 2018, 35(4): 356-361. doi: 10.11804/NuclPhysRev.35.04.356
Citation: T. Otsuka, Y. Tsunoda, T. Togashi, N. Shimizu, T. Abe. Nuclear Shapes Made Up by Nucleons and Nuclear Forces[J]. Nuclear Physics Review, 2018, 35(4): 356-361. doi: 10.11804/NuclPhysRev.35.04.356
参考文献 (23)

目录

    /

    返回文章
    返回