高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于不稳定核基本性质测量的原子核结构研究

白世伟 杨晓菲

白世伟, 杨晓菲. 基于不稳定核基本性质测量的原子核结构研究[J]. 原子核物理评论, 2018, 35(4): 382-389. doi: 10.11804/NuclPhysRev.35.04.382
引用本文: 白世伟, 杨晓菲. 基于不稳定核基本性质测量的原子核结构研究[J]. 原子核物理评论, 2018, 35(4): 382-389. doi: 10.11804/NuclPhysRev.35.04.382
BAI Shiwei, YANG Xiaofei. Study of Nuclear Structure by the Measurement of the Ground State Properties of Unstable Nuclei[J]. Nuclear Physics Review, 2018, 35(4): 382-389. doi: 10.11804/NuclPhysRev.35.04.382
Citation: BAI Shiwei, YANG Xiaofei. Study of Nuclear Structure by the Measurement of the Ground State Properties of Unstable Nuclei[J]. Nuclear Physics Review, 2018, 35(4): 382-389. doi: 10.11804/NuclPhysRev.35.04.382

基于不稳定核基本性质测量的原子核结构研究

doi: 10.11804/NuclPhysRev.35.04.382
基金项目: 国家重点研发计划项目(2018YFA0404403);国家自然科学基金面上项目(11875073)
详细信息
    作者简介:

    白世伟(1994-),男,甘肃天水人,博士研究生,从事粒子物理与原子核物理研究;E-mail:baisw@pku.edu.cn

    通讯作者: 杨晓菲,E-mail:xiaofei.yang@pku.edu.cn
  • 中图分类号: O571.3

Study of Nuclear Structure by the Measurement of the Ground State Properties of Unstable Nuclei

Funds: National Key R&D Program of China (2018YFA0404403); National Natural Science Foundation of China (11875073)
  • 摘要: 精密激光谱学是通过测量核素原子光谱的超精细结构和同位素移位来研究原子核的基本性质,为原子核自旋、磁矩、电四极矩及电荷均方根半径的确定提供了一种模型独立的测量方式。这些原子核基本性质的测量,能够比较精确地描述原子核微观结构的演化。近年来,随着放射性束流装置的发展,产生远离β-稳定线的丰中子/丰质子核素成为可能,也进一步促进了高分辨和高灵敏度的激光谱技术更加广泛的应用。简单介绍了基于放射性核素超精细结构的激光谱学测量原理,并通过几个经典实例来回顾近年来激光谱学在原子核奇特结构研究领域的独特贡献。主要通过分析几个重要核区原子核的基本性质,结合大尺度壳模型、ab initio理论、密度泛函理论等,来探索丰中子核中展现出来的一些新的奇特现象,如晕结构、幻数演化、形状共存等。


    High-precision laser spectroscopy technique is used to determine the ground state properties of exotic nuclei by probing its electronic hyperfine structure and isotope shift. It provides a model-independent measurement of nuclear spin, magnetic moment, electric quadrupole moment and charge radii. These nuclear parameters can be used to investigate the nuclear structure evolution and the nuclear shapes. With the development of accelerators and isotope separators, exotic isotopes far from β stability became accessible experimentally, which enhanced the capability of the laser spectroscopy technique being applied in the field of nuclear physics. A brief introduction to experimental principle is given, followed by a review of several typical examples for the experimental investigations in the different regions of nuclear chart. This aims to demonstrate the contributions of ground state properties measurement by using laser spectroscopy technique to the nuclear structure study of exotic isotopes. This discussion involves several different nuclear theory models in order to interpret the exotic phenomena observed in the neutron-rich isotopes, such as halo structure, shell evolution, shape coexistence and so on.
  • [1] MAYER M G. Phys Rev, 1949, 75:1969.
    [2] TANIHATA I, HAMAGAKI H, HASHIMOTO O, et al. Phys Rev Lett, 1985, 55:2676.
    [3] HANSEN P G, JONSON B. Euro Phys Lett, 1987, 4:409.
    [4] NEYENS G. Phys Rev C, 2011, 84:064310.
    [5] NEYENS G. J Phys G:Nucl Part Phys, 2016, 43:024007.
    [6] GAUDEFROY L, DAUGAS J M, HASS M, et al. Phys Rev Lett, 2009, 102:092501.
    [7] STEPPENBECK D, TAKEUCHI S, AOI N, et al. Nature, 2013, 502:207.
    [8] WIENHOLTZ F, BECK D, BLAUM K, et al. Nature, 2013, 498:346.
    [9] OTSUKA T, SUZUKI T, FUJIMOTO R, et al. Phys Rev Lett, 2005, 95:232502.
    [10] YANG X F(COLLAPS and CRIS collaboration). J Phys:Conference Series, 2018, 1024:012031.
    [11] NEUGART R. Nucl Instr Meth Phys Res, 1981, 186:165.
    [12] MUELLER A C, BUCHINGER F, KLEMPT W, et al. Nucl Phys A, 1983, 403:234.
    [13] VINGERHOETS P, FLANAGAN K T, AVGOULEA M, et al. Phys Rev C, 2010, 82:064311.
    [14] LU Z T, MUELLER P, DRAKE G W F, et al. Rev Mod Phys, 2013, 85:1383.
    [15] GARCIA RUIZ R F, BISSELL M L, BLAUM K, et al. Nat Phys, 2016, 12:162501.
    [16] FLANAGAN K T, VINGERHOETS P, AVGOULEA M, et al. Phys Rev Lett, 2009, 103:142501.
    [17] FERRER R, BARZAKH A, BASTIN B, et al. Nat Commun, 2017, 8:14520.
    [18] LAATIAOUI M, LAUTH W, BÄCKE H, et al. Nature, 2016, 538:495.
    [19] RAEDER S, ACKERMANN D, BÄCKE H, et al. Phys Rev Lett, 2018, 120:232503.
    [20] MANE E, BILLOWES J, BLAUM K, et al. The Eur Phys J A, 2009, 42:503.
    [21] LYNCH K M, RAJABALI M M, AGHAEI-KHOZANI H, et al. J Phys:Conference Series, 2012, 381:012128.
    [22] CAMPBELL P, MOORE I D, PEARSON M R, et al. Prog Part Nucl Phys, 2016, 85:127.
    [23] MUELLER P, SULAI I A, VILLARI A C C, et al. Phys Rev Lett, 2007, 99:252501.
    [24] WANG L B, MUELLER P, BAILEY B, et al. Phys Rev Lett, 2004, 93:142501.
    [25] MUELLER P, WANG L B, DRAKE G W F, et al. Phys Rev Lett, 2005, 94:133001.
    [26] MULLER P, WANG L B, BAILEY K, et al. Nucl Instrum Methods Phys Res Sec B, 2003, 204:536.
    [27] SANCHEZ R, NORTERSHAUSER W, EWALD G, et al. Phys Rev Lett, 2006, 96:033002.
    [28] NORTERSHAUSER W, TIEDEMANN D, ZAKOVA M, et al. Phys Rev Lett, 2009, 102:062503.
    [29] GEITHNER W, NEFF T, AUDI G, et al. Phys Rev Lett, 2008, 101:252502.
    [30] HUBER G, TOUCHARD F, BUTTGENBACH S, et al. Phys Rev C, 1978, 18:2342.
    [31] POVES A, RETAMOSA J. Phys Lett B, 1987, 184:311.
    [32] OTSUKA T, SUZUKI T, HONMA M, et al. Phys Rev Lett, 2010, 104:012501.
    [33] KOWALSKA M, YORDANOV D T, BLAUM K, et al. Phys Rev C, 2008, 77:034307.
    [34] NEYENS G, KOWALSKA M, YORDANOV D, et al. Phys Rev Lett, 2005, 94:022501.
    [35] XU Z Y, HEYLEN H, ASAHI K, et al. Phys Lett B, 2018, 782:619.
    [36] YORDANOV D T, BISSELL M L, BLAUM K, et al. Phys Rev Lett, 2012, 108:042504.
    [37] YORDANOV D T, KOWALSKA M, BLAUM K, et al. Phys Rev Lett, 2007, 99:212501.
    [38] HOLT J D, OTSUKA T, SCHWENK A, et al. J Phys G:Nucl Part Phys, 2012, 39:085111.
    [39] HEBELER K, HOLT J D, MENENDEZ J, et al. Annu Rev Nucl Part Sci, 2015, 65:457.
    [40] TARASOV O B, AHN D S, BAZIN D, et al. Phys Rev Lett, 2018, 121:022501.
    [41] PAPUGA J, BISSELL M L, KREIM K, et al. Phys Rev Lett, 2013, 110:172503.
    [42] PAPUGA J, BISSELL M L, KREIM K, et al. Phys Rev C, 2014, 90:034321.
    [43] GARCIA RUIZ R F, BISSELL M L, KREIM K, et al. Phys Rev C, 2015, 91:041304.
    [44] KREIM K, BISSELL M L, PAPUGA J, et al. Phys Lett B, 2014, 731:97.
    [45] CRAWFORD H L, JANSSENS R V F, MANTICA P F, et al. Phys Rev C, 2010, 82:014311.
    [46] KOSTER U, STONE N J, FLANAGAN K T, et al. Phys Rev C, 2011, 84:034320.
    [47] CHEAL B, BILLOWES J, BISSELL M L, et al. J Phys:Conference Series, 2012, 381:012071.
    [48] YANG X F, TSUNODA Y, BABCOCK C, et al. Phys Rev C, 2018, 97:044324.
    [49] SAHIN E, BELLO GARROTE F L, TSUNODA Y, et al. Phys Rev Lett, 2017, 118:242502.
    [50] OLIVIER L. FRANCHOO S, NⅡKURA M, et al. Phys Rev Lett, 2017, 119:192501.
    [51] HEYDE K, WOOD J L. Rev Mod Phys, 2011, 83:1467.
    [52] ANDREYEV A N, HUYSE M, VAN DUPPEN P, et al. Nature, 2000, 405:430.
    [53] COCOLIOS T E. Hyperfine Interact, 2017, 238:16.
    [54] ULMS G. BHATTACHERJEE K, DABKIEWICZ P, et al. Z Phys A Atomic Nuclei, 1986, 325:247.
    [55] YANG X F, WRAITH C, XIE L, et al. Phys Rev Lett, 2016, 116:182502.
    [56] WRAITH C, YANG X F, XIE L, et al. Phys Lett B, 2017, 771:385.
    [57] NEYENS G. Rep Prog Phys, 2003, 66:633.
  • 加载中
计量
  • 文章访问数:  1604
  • HTML全文浏览量:  290
  • PDF下载量:  238
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-16
  • 修回日期:  2018-11-10
  • 刊出日期:  2020-05-03

基于不稳定核基本性质测量的原子核结构研究

doi: 10.11804/NuclPhysRev.35.04.382
    基金项目:  国家重点研发计划项目(2018YFA0404403);国家自然科学基金面上项目(11875073)
    作者简介:

    白世伟(1994-),男,甘肃天水人,博士研究生,从事粒子物理与原子核物理研究;E-mail:baisw@pku.edu.cn

    通讯作者: 杨晓菲,E-mail:xiaofei.yang@pku.edu.cn
  • 中图分类号: O571.3

摘要: 精密激光谱学是通过测量核素原子光谱的超精细结构和同位素移位来研究原子核的基本性质,为原子核自旋、磁矩、电四极矩及电荷均方根半径的确定提供了一种模型独立的测量方式。这些原子核基本性质的测量,能够比较精确地描述原子核微观结构的演化。近年来,随着放射性束流装置的发展,产生远离β-稳定线的丰中子/丰质子核素成为可能,也进一步促进了高分辨和高灵敏度的激光谱技术更加广泛的应用。简单介绍了基于放射性核素超精细结构的激光谱学测量原理,并通过几个经典实例来回顾近年来激光谱学在原子核奇特结构研究领域的独特贡献。主要通过分析几个重要核区原子核的基本性质,结合大尺度壳模型、ab initio理论、密度泛函理论等,来探索丰中子核中展现出来的一些新的奇特现象,如晕结构、幻数演化、形状共存等。


High-precision laser spectroscopy technique is used to determine the ground state properties of exotic nuclei by probing its electronic hyperfine structure and isotope shift. It provides a model-independent measurement of nuclear spin, magnetic moment, electric quadrupole moment and charge radii. These nuclear parameters can be used to investigate the nuclear structure evolution and the nuclear shapes. With the development of accelerators and isotope separators, exotic isotopes far from β stability became accessible experimentally, which enhanced the capability of the laser spectroscopy technique being applied in the field of nuclear physics. A brief introduction to experimental principle is given, followed by a review of several typical examples for the experimental investigations in the different regions of nuclear chart. This aims to demonstrate the contributions of ground state properties measurement by using laser spectroscopy technique to the nuclear structure study of exotic isotopes. This discussion involves several different nuclear theory models in order to interpret the exotic phenomena observed in the neutron-rich isotopes, such as halo structure, shell evolution, shape coexistence and so on.

English Abstract

白世伟, 杨晓菲. 基于不稳定核基本性质测量的原子核结构研究[J]. 原子核物理评论, 2018, 35(4): 382-389. doi: 10.11804/NuclPhysRev.35.04.382
引用本文: 白世伟, 杨晓菲. 基于不稳定核基本性质测量的原子核结构研究[J]. 原子核物理评论, 2018, 35(4): 382-389. doi: 10.11804/NuclPhysRev.35.04.382
BAI Shiwei, YANG Xiaofei. Study of Nuclear Structure by the Measurement of the Ground State Properties of Unstable Nuclei[J]. Nuclear Physics Review, 2018, 35(4): 382-389. doi: 10.11804/NuclPhysRev.35.04.382
Citation: BAI Shiwei, YANG Xiaofei. Study of Nuclear Structure by the Measurement of the Ground State Properties of Unstable Nuclei[J]. Nuclear Physics Review, 2018, 35(4): 382-389. doi: 10.11804/NuclPhysRev.35.04.382
参考文献 (57)

目录

    /

    返回文章
    返回