高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

重自共轭原子核中α凝聚体物理性质的理论研究(英文)

柏栋 任中洲

柏栋, 任中洲. 重自共轭原子核中α凝聚体物理性质的理论研究(英文)[J]. 原子核物理评论, 2018, 35(4): 475-481. doi: 10.11804/NuclPhysRev.35.04.475
引用本文: 柏栋, 任中洲. 重自共轭原子核中α凝聚体物理性质的理论研究(英文)[J]. 原子核物理评论, 2018, 35(4): 475-481. doi: 10.11804/NuclPhysRev.35.04.475
BAI Dong, REN Zhongzhou. Theoretical Studies of α Condensates in Heavy Self-conjugate Nuclei[J]. Nuclear Physics Review, 2018, 35(4): 475-481. doi: 10.11804/NuclPhysRev.35.04.475
Citation: BAI Dong, REN Zhongzhou. Theoretical Studies of α Condensates in Heavy Self-conjugate Nuclei[J]. Nuclear Physics Review, 2018, 35(4): 475-481. doi: 10.11804/NuclPhysRev.35.04.475

重自共轭原子核中α凝聚体物理性质的理论研究(英文)

doi: 10.11804/NuclPhysRev.35.04.475
基金项目: 国家重点研发计划项目(2018YFA0404403,2016YFE0129300);国家自然科学基金资助项目(11535004,11761161001,11375086,11120101005,11175085,11235001,11565010,11881240623);澳门科技发展基金资助项目(008/2017/AFJ);中国博士后科学基金资助项目(2018M640470)
详细信息
  • 中图分类号: O571.6

Theoretical Studies of α Condensates in Heavy Self-conjugate Nuclei

Funds: National Key R&D Program of China (2018YFA0404403, 2016YFE0129300); National Natural Science Foundation of China (11535004, 11761161001, 11375086, 11120101005, 11175085, 11235001, 11565010, and 11881240623); Science and Technology Development Fund of Macau (008/2017/AFJ); China Postdoctoral Science Foundation (2018M640470)
  • 摘要: 原子核多体系统中可以存在一类被称为α凝聚体的奇异物理态。该奇异态可以被视为玻色-爱因斯坦凝聚在原子核物理中的推广。一般认为,α凝聚体不仅可以存在于12C中,也可以存在于诸如16O,20Ne,24Mg,28Si等质量更重的自共轭原子核中。重自共轭原子核中的α凝聚体的物理性质是核结构理论重要的研究课题,相关理论计算可以为实验研究提供有益参考。主要介绍了该研究方向的基本理论框架,包括Tohsaki-Horiuchi-Schuck-Röpke波函数方法、Yamada-Schuck模型,以及近期提出的半解析近似方法。还讨论了α粒子间四体相互作用对α凝聚体物理性质的影响,并对α凝聚体破裂和一维α凝聚体等可能的研究方向做了简要论述。


    α condensates are exotic states in nuclear many-body systems, and can be viewed as the generalization of the Bose-Einstein condensate in nuclear physics. It is widely believed that, α condensates exist not only in 12C, but also in heavier self-conjugate nuclei such as 16O, 20Ne, 24Mg, 28Si, etc. It is important to understand the physical properties of these α condensates in heavy self-conjugate nuclei from the theoretical perspective, and the theoretical results could be a useful reference for the experimental studies. This work reviews the basic frameworks to study α condensates, including the Tohsaki-Horiuchi-Schuck-Röpke wave function, the Yamada-Schuck model, and the recently proposed semi-analytic approximation. The impacts of the four-body interactions of α particles on the physical properties of α condensates are reported. The breakup of α condensates and the one-dimensional α condensates are discussed briefly as the possible future directions in this field.
  • [1] TOHSAKI A, HORIUCHI H, SCHUCK P, et al. Phys Rev Lett, 2001, 87:192501.
    [2] HOYLE F. Astrophys J Suppl, 1954, 1:121.
    [3] FREER M, HORIUCHI H, KANADA-EN'yo Y, et al. Rev Mod Phys, 2018, 90:035004.
    [4] TOHSAKI A, HORIUCHI H, SCHUCK P, et al. Rev Mod Phys, 2017, 89:011002.
    [5] HORIUCHI H. Prog Theor Phys, 1974, 51:1266.
    [6] HORIUCHI H. Prog Theor Phys, 1975, 53:447.
    [7] UEGAKI E, OKABE S, ABE Y, et al. Prog Theor Phys, 1977, 57:1262.
    [8] UEGAKI E, OKABE S, ABE Y, et al. Prog Theor Phys, 1978, 59:1031.
    [9] UEGAKI E, OKABE S, ABE Y, et al. Prog Theor Phys, 1979, 62:1621.
    [10] KAMIMURA M. Nucl Phys A, 1981, 351:456.
    [11] ZHOU B, REN Z, XU C, et al. Phys Rev C, 2012, 86:014301.
    [12] ZHOU B, FUNAKI Y, HORIUCHI H, et al. Phys Rev Lett, 2013, 110:262501.
    [13] LYU M, REN Z, ZHOU B, et al. Phys Rev C, 2015, 91:014313.
    [14] LYU M, REN Z, ZHOU B, et al. Phys Rev C, 2016, 93, 054308.
    [15] LYU M, REN Z, HORIUCHI H, et al. arXiv:1706.06538[nucl-th].
    [16] ZHAO Q, REN Z, LYU M, et al. Phys Rev C, 2018, 97:054323.
    [17] ZHAO Q, REN Z, LYU M, et al. arXiv:1810.04427[nucl-th].
    [18] FUNAKI Y, YAMADA T, HORIUCHI H, et al., Phys Rev Lett, 2008, 101:082502.
    [19] FUNAKI Y. Phys Rev C, 2018, 97:021304.
    [20] BARBUI M, HAGEL K, GAUTHIER J, et al. Phys Rev C, 2018, 98:044601.
    [21] BRINK D M. Proceedings of International School of Physics "Enrico Fermi" Course XXXVI[M]. New York:Academic Press, 1966.
    [22] TOHSAKI A. Phys Rev C, 1994, 49:1814.
    [23] VOLKOV A B. Nucl Phys, 1965, 74:33.
    [24] ITAGAKI N. Phys Rev C, 2016, 94:064324.
    [25] YAMADA T, SCHUCK P. Phys Rev C, 2004, 69:024309.
    [26] BAI D, REN Z. Phys Rev C, 2018, 97:054301.
    [27] DELL'AQUILA D, LOMBARDO I, VERDE G, et al. Phys Rev Lett, 2017, 119:132501.
    [28] SMITH R, KOKALOVA T, WHELDON C, et al. Phys Rev Lett, 2017, 119:132502.
    [29] KOKALOVA T, ITAGAKI N, VON OERTZEN W, et al. Phys Rev Lett, 2006, 96, 192502.
    [30] FUNAKI Y, TOHSAKI A, HORIUCHI H, et al. Phys Rev C, 2003, 67:051306.
    [31] FUNAKI Y, HORIUCHI H, VON OERTZEN W, et al. Phys Rev C, 2009, 80:064326.
    [32] ZHOU B, TOHSAKI A, HORIUCHI H, et al. Phys Rev C, 2016, 94:044319.
    [33] MORINAGA H. Phys Rev, 1956, 101:254.
    [34] MORINAGA H. Phys Lett, 1966, 21:78.
    [35] NEFF T, FELDMEIER H. Nucl Phys A, 2004, 738:357.
    [36] KANADA-EN'YO Y. Prog Theor Phys, 2007, 117:655.
    [37] CHEVALLIER P, SCHEIBLING F, GOLDRING G, et al. Phys Rev, 1967, 160:827.
    [38] FREER M, CLARKE N M, CURTIS N, et al. Phys Rev C, 1995, 51:1682.
    [39] FREER M, NICOLI M P, SINGER S M, et al. Phys Rev C, 2004, 70:064311.
    [40] SUHARA T, FUNAKI Y, ZHOU B, et al. Phys Rev Lett, 2014, 112:062501.
    [41] BAI D, REN Z. To APPEAR (2019).
    [42] TOHSAKI A, ITAGAKI N. arXiv:1809.00460[nucl-th].
  • 加载中
计量
  • 文章访问数:  1463
  • HTML全文浏览量:  111
  • PDF下载量:  114
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-14
  • 修回日期:  2018-11-20
  • 刊出日期:  2020-05-03

重自共轭原子核中α凝聚体物理性质的理论研究(英文)

doi: 10.11804/NuclPhysRev.35.04.475
    基金项目:  国家重点研发计划项目(2018YFA0404403,2016YFE0129300);国家自然科学基金资助项目(11535004,11761161001,11375086,11120101005,11175085,11235001,11565010,11881240623);澳门科技发展基金资助项目(008/2017/AFJ);中国博士后科学基金资助项目(2018M640470)
  • 中图分类号: O571.6

摘要: 原子核多体系统中可以存在一类被称为α凝聚体的奇异物理态。该奇异态可以被视为玻色-爱因斯坦凝聚在原子核物理中的推广。一般认为,α凝聚体不仅可以存在于12C中,也可以存在于诸如16O,20Ne,24Mg,28Si等质量更重的自共轭原子核中。重自共轭原子核中的α凝聚体的物理性质是核结构理论重要的研究课题,相关理论计算可以为实验研究提供有益参考。主要介绍了该研究方向的基本理论框架,包括Tohsaki-Horiuchi-Schuck-Röpke波函数方法、Yamada-Schuck模型,以及近期提出的半解析近似方法。还讨论了α粒子间四体相互作用对α凝聚体物理性质的影响,并对α凝聚体破裂和一维α凝聚体等可能的研究方向做了简要论述。


α condensates are exotic states in nuclear many-body systems, and can be viewed as the generalization of the Bose-Einstein condensate in nuclear physics. It is widely believed that, α condensates exist not only in 12C, but also in heavier self-conjugate nuclei such as 16O, 20Ne, 24Mg, 28Si, etc. It is important to understand the physical properties of these α condensates in heavy self-conjugate nuclei from the theoretical perspective, and the theoretical results could be a useful reference for the experimental studies. This work reviews the basic frameworks to study α condensates, including the Tohsaki-Horiuchi-Schuck-Röpke wave function, the Yamada-Schuck model, and the recently proposed semi-analytic approximation. The impacts of the four-body interactions of α particles on the physical properties of α condensates are reported. The breakup of α condensates and the one-dimensional α condensates are discussed briefly as the possible future directions in this field.

English Abstract

柏栋, 任中洲. 重自共轭原子核中α凝聚体物理性质的理论研究(英文)[J]. 原子核物理评论, 2018, 35(4): 475-481. doi: 10.11804/NuclPhysRev.35.04.475
引用本文: 柏栋, 任中洲. 重自共轭原子核中α凝聚体物理性质的理论研究(英文)[J]. 原子核物理评论, 2018, 35(4): 475-481. doi: 10.11804/NuclPhysRev.35.04.475
BAI Dong, REN Zhongzhou. Theoretical Studies of α Condensates in Heavy Self-conjugate Nuclei[J]. Nuclear Physics Review, 2018, 35(4): 475-481. doi: 10.11804/NuclPhysRev.35.04.475
Citation: BAI Dong, REN Zhongzhou. Theoretical Studies of α Condensates in Heavy Self-conjugate Nuclei[J]. Nuclear Physics Review, 2018, 35(4): 475-481. doi: 10.11804/NuclPhysRev.35.04.475
参考文献 (42)

目录

    /

    返回文章
    返回