Advanced Search

CHUAI Xiaoya, HUANG Zhongkui, WEN Weiqiang, WANG Hanbing, XU Xin, WANG Shuxing, LI Jiguang, DOU Lijun, ZHAO Dongmei, ZHU Xiaolong, MAO Lijun, YIN Dayu, YANG Jiancheng, YUAN Youjin, MA Xinwen. Investigation of Isotope Shift Effect of Li-like 36,40Ar15+ by Dielectronic Recombination Spectroscopy at the CSRm[J]. Nuclear Physics Review, 2018, 35(2): 196-203. doi: 10.11804/NuclPhysRev.35.02.196
Citation: CHUAI Xiaoya, HUANG Zhongkui, WEN Weiqiang, WANG Hanbing, XU Xin, WANG Shuxing, LI Jiguang, DOU Lijun, ZHAO Dongmei, ZHU Xiaolong, MAO Lijun, YIN Dayu, YANG Jiancheng, YUAN Youjin, MA Xinwen. Investigation of Isotope Shift Effect of Li-like 36,40Ar15+ by Dielectronic Recombination Spectroscopy at the CSRm[J]. Nuclear Physics Review, 2018, 35(2): 196-203. doi: 10.11804/NuclPhysRev.35.02.196

Investigation of Isotope Shift Effect of Li-like 36,40Ar15+ by Dielectronic Recombination Spectroscopy at the CSRm

doi: 10.11804/NuclPhysRev.35.02.196
Funds:  National Key R&D Program of China (2017YFA0402300); National Natural Science Foundation of China (11320101003); Key Research Program of Frontier Sciences, CAS (QYZDY-SSW-SLH006)
  • Received Date: 2018-03-14
  • Rev Recd Date: 2018-04-20
  • Publish Date: 2018-06-20
  • The cooler storage ring is equipped with an electron-cooler. It is an excellent experimental platform for dielectronic recombination (DR) experiment of highly-charged ions. In this paper, the dielectronic recombination experiments of lithium-like Ar15+ ions with mass number 36 and 40 are conducted at the HIRFL-CSRm(main ring of the Cooling Storage Ring of Heavy Ion Research Facility in Lanzhou). The experimental electron-ion collision energy scale is from 0 eV to 35 eV. Extrapolation method is exploited to obtain the excitation energies of transitions 2s1/2→2p1/2 and 2s1/2→2p3/2 of the 36,40Ar15+ ions from experimental data. Meanwhile, GRASP2K program is utilized to calculate the mass shift factors and field shift factors of 36,40Ar15+ ions for 2s1/2→2p1/2 and 2s1/2→2p3/2 transitions to obtain isotope shifts in DR spectra. In theoretical calculation, isotope shifts of 36,40Ar15+ ions corresponding to 2s1/2→2p1/2 and 2s1/2→2p3/2 are 0.861 meV and 0.868 meV, respectively. They are both less than the experimental precision (~10 meV) of these dielectronic recombination experiments at the CSRm, which explains that isotope shifts cannot be distinguished from the experimental dielectronic recombination spectra. However, the field shift of highly-charged ions is proportional to Z5. In the future, the dielectronic recombination experiments of highly-charged heavy ions even radioactive ions will be conducted at the HIRFL-CSRe (experimental ring of the Cooling Storage Ring of Heavy Ion Research Facility in Lanzhou) and the future large accelerator facility——HIAF(High intensity Heavy-ion Accelerator Facility) to measure isotope shifts to obtain the nuclear charge radius information.
  • [1] KING W H. Isotope Shifts in Atomic Spectra[M]. New York:Plenum Press, 1984:54.
    [2] PÁLFFY A. Contemporary Physics, 2010, 51:471.
    [3] CAMPBELL P, MOORE I D, PEARSON M R. Progress in Particle and Nuclear Physics, 2016, 86:127.
    [4] NÖRTERSHÄUSER W, S ÁNCHEZ R, EWALD G, et al. Physical Review A, 2011, 83:012516.
    [5] NEUGART R, BILLOWES J, BISSELL M L, et al. Journal of Physics G:Nuclear and Particle Physics, 2017, 44:064002.
    [6] KOZHEDUB Y S, VOLOTKA A V, ARTEMYEV A N, et al. Physical Review A, 2010, 81:042513.
    [7] LI J, NAZÉ C, GODEFROID M, et al. Physical Review A, 2012, 86:022518.
    [8] ZUBOVA N A, KOZHEDUB Y S, SHABAEV V M, et al. Physical Review A, 2014, 90:062512.
    [9] NAZÉ C, VERDEBOUT S, RYNKUN P, et al. Atomic Data and Nuclear Data Tables, 2014, 100:1197.
    [10] FRANZKE B. Nucl Instr Meth B,1987, 24:18.
    [11] SCHUCH R, BÁRÁNY A, DANARED H, et al. Nucl Instr Meth B, 1989, 43:411.
    [12] WOLF A, BERGER J, BOCK M, et al. Zeitschrift für Physik D Atoms, Molecules and Clusters, 1991, 21:S69.
    [13] ELLIOTT S, BEIERSDORFER P, CHEN M H. Physical Review Letters, 1996, 76:1031.
    [14] NAKAMURA N, KAVANAGH A P, WATANABE H, et al. Physical Review Letters, 2008, 100:073203.
    [15] TU B, XIAO J, YAO K, et al. Physical Review A, 2015, 91:060502.
    [16] BRANDAU C, KOZHUHAROV C, MÜLLER A, et al. Physical Review Letters, 2003, 91:073202.
    [17] LESTINSKY M, LINDROTH E, ORLOV D A, et al. Physical Review Letters, 2008, 100:033001.
    [18] MÜLLER A. Advances In Atomic, Molecular, and Optical Physics, 2008, 55:293.
    [19] SCHIPPERS S. Nucl Instr Meth B, 2015, 350:61.
    [20] BRANDAU C, KOZHUHAROV C, LESTINSKY M, et al. Physica Scripta, 2015, 2015:014022.
    [21] MA X, WEN W Q, HUANG Z K, et al. Physica Scripta, 2015, 2015:014012.
    [22] BRANDAU C, KOZHUHAROV C, MÜLLER A, et al. Physica Scripta, 2013, 2013:014050.
    [23] SCHUCH R, LINDROTH E, MADZUNKOV S, et al. Physical Review Letters, 2005, 95:183003.
    [24] BRANDAU C, KOZHUHAROV C, HARMAN Z, et al. Physical Review Letters, 2008, 100:073201.
    [25] HUANG Z K, WEN W Q, XU X, et al. Nucl Instr Meth B, 2017, 408:135.
    [26] MA X, WEN W Q, ZHANG S F, et al. Nucl Instr Meth B, 2017, 408:169.
    [27] HUANG Z K, WEN W Q, WANG H B, et al. Physica Scripta, 2015, 2015:014023.
    [28] HUANG Z K, WEN W Q, XU X, et al. Journal of Physics:Conference Series, 2017, 875:012020.
    [29] HUANG Z K. Studies of DR Experiments of Li-like and Belike Argon Ions at the CSRm[D]. Lanzhou:Institute of Modern Physics, Chinese Academy of Sciences, 2017(4):25. (in Chinese) (黄忠魁. 基于重离子冷却储存环CSRm开展的类锂、类铍氩离子双电子复合实验研究[D]. 兰州:中国科学院近代物理研所, 2017(4):25.)
    [30] XU W Q. Investigations on Fine Spectroscopy of DoublyExcited States in Strongly-Correlated Ion Systems[D]. Hefei:University of Science and Technology of China, 2014(2):32. (in Chinese) (徐卫青. 强关联离子体系双激发态的精细谱学研究[D]. 合肥:中国科学技术大学, 2014(2):32.)
    [31] WEN W Q, MA X, XU W Q, et al. Nucl Instr Meth B, 2013, 317:731.
    [32] KILGUS G, HABS D, SCHWALM D, et al. Physical Review A, 1992, 46:5730.
    [33] FRICKE G, BERNHARDT C, HEILIG K, et al. Atomic Data and Nuclear Data Tables, 1995, 60:177.
    [34] SHABAEV V M. Physical Review A, 1998, 57:59.
    [35] ANGELI I, MARINOVA K P. Atomic Data and Nuclear Data Tables, 2013, 99:69.
    [36] HUANG Z K, WEN W Q, XU X, et al. Astrophysical Journal Supplement Series, 2018, 235:2.
    [37] SALOMAN E B. J Phys Chem Ref Data, 2010, 39:033101.
    [38] HENNING W F. GSI-Darmstadt. November, 2001.http://www.fair-center.eu/for-users/publications/fairpublications.html.
    [39] YANG J C, XIA J W, XIAO G Q, et al. Nucl Instr Meth B, 2013, 317:263.
    [40] MAO L J, YANG J C, XIA J W, et al. Nucl Instr Meth A, 2015, 786:91.
    [41] WU B, YANG J C, XIA J W, et al. Nucl Instr Meth A, 2018, 881:27.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1222) PDF downloads(134) Cited by()

Proportional views

Investigation of Isotope Shift Effect of Li-like 36,40Ar15+ by Dielectronic Recombination Spectroscopy at the CSRm

doi: 10.11804/NuclPhysRev.35.02.196
Funds:  National Key R&D Program of China (2017YFA0402300); National Natural Science Foundation of China (11320101003); Key Research Program of Frontier Sciences, CAS (QYZDY-SSW-SLH006)

Abstract: The cooler storage ring is equipped with an electron-cooler. It is an excellent experimental platform for dielectronic recombination (DR) experiment of highly-charged ions. In this paper, the dielectronic recombination experiments of lithium-like Ar15+ ions with mass number 36 and 40 are conducted at the HIRFL-CSRm(main ring of the Cooling Storage Ring of Heavy Ion Research Facility in Lanzhou). The experimental electron-ion collision energy scale is from 0 eV to 35 eV. Extrapolation method is exploited to obtain the excitation energies of transitions 2s1/2→2p1/2 and 2s1/2→2p3/2 of the 36,40Ar15+ ions from experimental data. Meanwhile, GRASP2K program is utilized to calculate the mass shift factors and field shift factors of 36,40Ar15+ ions for 2s1/2→2p1/2 and 2s1/2→2p3/2 transitions to obtain isotope shifts in DR spectra. In theoretical calculation, isotope shifts of 36,40Ar15+ ions corresponding to 2s1/2→2p1/2 and 2s1/2→2p3/2 are 0.861 meV and 0.868 meV, respectively. They are both less than the experimental precision (~10 meV) of these dielectronic recombination experiments at the CSRm, which explains that isotope shifts cannot be distinguished from the experimental dielectronic recombination spectra. However, the field shift of highly-charged ions is proportional to Z5. In the future, the dielectronic recombination experiments of highly-charged heavy ions even radioactive ions will be conducted at the HIRFL-CSRe (experimental ring of the Cooling Storage Ring of Heavy Ion Research Facility in Lanzhou) and the future large accelerator facility——HIAF(High intensity Heavy-ion Accelerator Facility) to measure isotope shifts to obtain the nuclear charge radius information.

CHUAI Xiaoya, HUANG Zhongkui, WEN Weiqiang, WANG Hanbing, XU Xin, WANG Shuxing, LI Jiguang, DOU Lijun, ZHAO Dongmei, ZHU Xiaolong, MAO Lijun, YIN Dayu, YANG Jiancheng, YUAN Youjin, MA Xinwen. Investigation of Isotope Shift Effect of Li-like 36,40Ar15+ by Dielectronic Recombination Spectroscopy at the CSRm[J]. Nuclear Physics Review, 2018, 35(2): 196-203. doi: 10.11804/NuclPhysRev.35.02.196
Citation: CHUAI Xiaoya, HUANG Zhongkui, WEN Weiqiang, WANG Hanbing, XU Xin, WANG Shuxing, LI Jiguang, DOU Lijun, ZHAO Dongmei, ZHU Xiaolong, MAO Lijun, YIN Dayu, YANG Jiancheng, YUAN Youjin, MA Xinwen. Investigation of Isotope Shift Effect of Li-like 36,40Ar15+ by Dielectronic Recombination Spectroscopy at the CSRm[J]. Nuclear Physics Review, 2018, 35(2): 196-203. doi: 10.11804/NuclPhysRev.35.02.196
Reference (41)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return