Advanced Search
Volume 36 Issue 2
Jul.  2019
Turn off MathJax
Article Contents

SUN Wei, QUAN Shan, XIANG Jian, LI Zhipan. Beyond-mean-field Study of Octupole Shape Evolution in Neutron-deficient Ba Isotopes[J]. Nuclear Physics Review, 2019, 36(2): 144-150. doi: 10.11804/NuclPhysRev.36.02.144
Citation: SUN Wei, QUAN Shan, XIANG Jian, LI Zhipan. Beyond-mean-field Study of Octupole Shape Evolution in Neutron-deficient Ba Isotopes[J]. Nuclear Physics Review, 2019, 36(2): 144-150. doi: 10.11804/NuclPhysRev.36.02.144

Beyond-mean-field Study of Octupole Shape Evolution in Neutron-deficient Ba Isotopes

doi: 10.11804/NuclPhysRev.36.02.144
Funds:  National Natural Science Foundation of China (11475140, 11875225, 11765015); Joint Fund Project of Education Department in Guizhou Province(Qianjiaohe KY Zi[2016]312); National Undergraduate Training Programs for Innovation and Entrepreneurship (201810635045)
  • Received Date: 2018-09-17
  • Rev Recd Date: 2019-03-27
  • Publish Date: 2019-06-20
  • The beyond-mean-field model is applied to study the octupole deformation and shape transition in 114-124Ba. Potential energy surfaces (PES), low-energy excitation spectra, electric transition rates, and probability density distributions in Ba isotopes are systematically analyzed using a quadrupole-octupole collective Hamiltonian (QOCH) model based on covariant density functional theory. The microscopic QOCH model is shown to accurately describe the empirical trend of low-energy positive-and negative-parity states. The theoretical results of PES, low-lying negative-parity bands, rather large B(E3;31- → 01+), and extended probability density distributions show evidence of strong octupole correlations in 114Ba. 116,118Ba present as transitional nuclei, while 120-124Ba are well quadrupole deformed nuclei.
  • [1] BUTLER P A, NAZAREWICZ W. Rev Mod Phys, 1996, 68:349.
    [2] AHMAD I, BUTLER P A. Annu Rev Nucl Part Sci, 1993, 43:71.
    [3] BUTLER P A, WILLMANN L. Nucl Phys News, 2015, 25:12.
    [4] BUTLER P A. J Phys G, 2016, 43:073002.
    [5] GAFFNEY L P, BUTLER P A, SCHECK M, et al. Nature (London), 2013, 497:199.
    [6] BUCHER B, ZHU S, WU C Y, et al. Phys Rev Lett, 2016, 116:112503.
    [7] BUCHER B, ZHU S, WU C Y, et al. Phys Rev Lett, 2017, 118:152504.
    [8] DING B, LIU Z, SEWERYNIAK D, et al. Phys Rev C, 2017, 95:024301.
    [9] SMITH J F, CHIARA C J, FOSSAN D B, et al. Phys Lett B, 2001, 523:13.
    [10] DE ANGELIS G, GADEA A, FARNEA E, et al. Phys Lett B, 2002, 535:93.
    [11] DEGRAAF J, CROMAZ M, DRAKE T E, et al. Phys Rev C, 1998, 58:164.
    [12] LIU Z, SUN X, ZHOU X, et al. Eur Phys J A, 1998, 1:125.
    [13] SMITH J F, CHIARA C J, FOSSAN D B, et al. Phys Rev C, 1998, 57:R1037.
    [14] CHEN X C, ZHAO J, XU C, et al. Phys Rev C, 2016, 94:021301.
    [15] ZHU S J, SAKHAEE M, YANG L M, et al. Chin Phys Lett, 2001, 18:1027.
    [16] MASON P, BENZONI G, BRACCO A, et al. Phys Rev C, 2005, 72:064315.
    [17] AFANASJEV A V, ABUSARA H, AGBEMAVA, S E. Phys Scr, 2018, 93:034002.
    [18] FU Y, WANG H, WANG L J, et al. Phys Rev C, 2018, 97:024338.
    [19] MAREVIC P, EBRAN J P, KHAN E, et al. Phys Rev C, 2018, 97:024334.
    [20] NOMURA K, NIKSIC T, VRETENAR D. Phys Rev C, 2018, 97:024317.
    [21] ZHANG W, NIU Y F. Phys Rev C,2017, 96:054308.
    [22] AGBEMAVA S E, AFANASJEV A V. Phys Rev C, 2017, 96:024301.
    [23] YAO J M, ENGEL J. Phys Rev C, 2016, 94:014306.
    [24] GENG L S, MENG J, TOKI H. Chin Phys Lett, 2017, 24:1865.
    [25] GUO J Y, JIAO P, FANG X Z. Phys Rev C, 2010, 82:047301.
    [26] ROBLEDO L M, BALDO M, SCHUCK P, et al. Phys Rev C, 2010, 81:034315.
    [27] ROBLEDO L M, BERTSCH G F. Phys Rev C, 2011, 84:054302.
    [28] RODRIGUEZ-GUZMAN R, ROBLEDO L M, SARRIGUREN P. Phys Rev C, 2012, 86:034336.
    [29] ROBLEDO L M, BUTLER P A. Phys Rev C, 2013, 88:051302.
    [30] BERNARD R N, ROBLEDO L M, RODRIGUEZ T R. Phys Rev C, 2016, 93:061302.
    [31] ROBLEDO L M. J Phys G, 2015, 42:055109.
    [32] ZHAO J, LU B N, ZHAO E G, et al. Phys Rev C, 2012, 86:057304.
    [33] ZHOU S G. Phys Scr, 2016, 91:063008.
    [34] NOMURA K, VRETENAR D, LU B N. Phys Rev C, 2013, 88:021303.
    [35] NOMURA K, VRETENAR D, NIKSIC T, et al. Phys Rev C, 2014, 89:024312.
    [36] NOMURA K, RODRIGUEZ-GUZMAN R, ROBLEDO L M. Phys Rev C, 2015, 92:014312.
    [37] AGBEMAVA S E, AFANASJEV A V, RING P. Phys Rev C, 2016, 93:044304.
    [38] YAO J M, HAGINO K. Phys Rev C, 2016, 94:011303.
    [39] ZHANG W, LI Z P, ZHANG S Q, et al. Phys Rev C, 2010, 81:034302.
    [40] LI Z P, SONG B Y, YAO J M, et al. Phys Lett B, 2013, 726:866.
    [41] YAO J M, ZHOU E F, LI Z P. Phys Rev C, 2015, 92:041304.
    [42] LI Z P, NIKSIC T, VRETENAR D. J Phys G, 2016, 43:024005.
    [43] ZHOU E F, YAO J M,LI Z P, et al. Phys Lett B, 2016, 753:227.
    [44] XIA S Y, TAO H, LU Y, et al. Phys Rev C, 2017, 96:054303.
    [45] TAO H, ZHAO J, LI Z P, et al. Phys Rev C, 2017, 96:024319.
    [46] EBATA S, NAKATSUKASA T. Phys Scr, 2017, 92:064005.
    [47] MOLLER P, BENGTSSON R, CARLSSON B G, et al. At Data Nucl Data Tables, 2008, 94:758.
    [48] WANG H L, YANG J, LIU M L, et al. Phys Rev C, 2015, 92:024303.
    [49] NAZAREWICZ W, OLANDERS P, RAGNARSSON I, et al. Nucl Phys A, 1984, 429:269.
    [50] LIU C, WANG S Y, QI B, et al. Chin Phys C, 2018, 42:074105.
    [51] ZAMFIR N V, KUSNEZOV D. Phys Rev C, 2001, 63:054306.
    [52] OTSUKA T, SUGITA M. Phys Lett B, 1988, 209:140.
    [53] CHEN Y S, GAO Z C. Phys Rev C, 2000, 63:014314.
    [54] CHEN Y J, GAO Z C, CHEN Y S, et al. Phys Rev C, 2015, 91:014317.
    [55] BENDER M, HEENEN P H, REINHARD P G. Rev Mod Phys, 2003, 121:75.
    [56] RING P. Prog Part Nucl Phys, 1996, 37:193.
    [57] VRETENAR D, AFANASJEV A V, LALAZISSIS G A, et al. Phys Rep, 2005, 409:101.
    [58] MENG J, TOKI H, ZHOU S G, et al. Prog Part Nucl Phys, 2006, 57:470.
    [59] MENG J, PENG J, ZHANG S Q, et al. Front Phys, 2013, 8:55.
    [60] MENG J. Relativistic Density Functional for Nuclear Structure[M]. Singapore:World Scientific, 2016.
    [61] MENG J, SUGAWARA-TANABE K, YAMAJI S, et al. Phys Rev C, 1999, 59:154.
    [62] ZHOU S G, MENG J, RING P. Phys Rev Lett, 2003, 91:262501.
    [63] LIANG H Z, MENG J, ZHOU S G. Phys Rep, 2015, 570:1.
    [64] LONG W H, MEGN J, VAN GIAI N, et al. Phys Rev C, 2004, 69:034319.
    [65] ZHANG W, MENG J, ZHANG S Q, et al. Nucl Phys A, 2005, 753:106.
    [66] ZHAO P W, LI Z P, YAO J M, et al. Phys Rev C, 2010, 82:054319.
    [67] ZHANG W, LI Z P, ZHANG S Q. Phys Rev C, 2013, 88:054324.
    [68] QUAN S, CHEN Q, LI Z P, et al. Phys Rev C, 2017, 95:054321.
    [69] LU K Q, LI Z X, LI Z P, et al. Phys Rev C, 2015, 91:027304.
    [70] ZHANG Q S, NIU Z M, LI Z P, et al. Fron of Phys, 2014, 9:529.
    [71] MENG J, RING P. Phys Rev Lett, 1996, 77:3963.
    [72] MENG J, RING P. Phys Rev Lett, 1998, 80:460.
    [73] MENG J, TOKI H, ZENG J Y, et al. Phys Rev C, 2002, 65:041302.
    [74] MENG J, ZHOU S G. J Phys G, 2015, 42:093101.
    [75] LIANG H Z, VAN GIAI N, MENG J. Phys Rev Lett, 2008, 101:122502.
    [76] LIANG H Z, VAN GIAI N, MENG J. Phys Rev C, 2009, 79:064316.
    [77] ZHAO P W, ZHANG S Q, PENG J, et al. Phys Lett B, 2011, 699:181.
    [78] ZHAO P W, PENG J, LIANG H Z, et al. Phys Rev Lett, 2011, 107:122501.
    [79] ZHAO P W, PENG J, LIANG H Z, et al. Phys Rev C, 2012, 85:054310.
    [80] ZHAO P W, ITAGAKI N, MENG J. Phys Rev Lett, 2015, 115:022501.
    [81] ZHAO P W, ZHANG S Q, MENG J. Phys Rev C, 2015, 92:034319.
    [82] ZHAO P W. Phys Lett B, 2017, 773:1.
    [83] RING P, SCHUCK P. The Nuclear Many-Body Problem[M]. Heidelberg:Springer-Verlag, 1980.
    [84] YAO J M, HAGINO K, LI Z P, et al. Phys Rev C, 2014, 89:054306.
    [85] XU Z, LI Z P. Chin Phys C, 2017, 41:124107.
    [86] INGLIS D R. Phys Rev, 1956, 103:1786.
    [87] BELIAEV S T. Nucl Phys, 1961, 24:322.
    [88] GIROD M, GRAMMATICOS B. Nucl Phys A, 1979, 330:40.
    [89] NIKSIC T, VRETENAR D, RING P. Phys Rev C, 2008, 78:034318.
    [90] TIAN Y, MA Z Y, RING P. Phys Lett B, 2009, 676:44.
    [91] NIKSIC T, PAAR N, VRETENAR D, et al. Commp Phys Comm, 2014, 185:1808.
    [92] NNDC National Nuclear Data Center, Brookhaven National Laboratory.[EB/OL].[2018-08-1]. http://www.nndc.bnl.gov/.
    [93] HINOHARA N, LI Z P, NAKATSUKASA T, et al. Phys Rev C, 2012, 85:024323.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1174) PDF downloads(121) Cited by()

Proportional views

Beyond-mean-field Study of Octupole Shape Evolution in Neutron-deficient Ba Isotopes

doi: 10.11804/NuclPhysRev.36.02.144
Funds:  National Natural Science Foundation of China (11475140, 11875225, 11765015); Joint Fund Project of Education Department in Guizhou Province(Qianjiaohe KY Zi[2016]312); National Undergraduate Training Programs for Innovation and Entrepreneurship (201810635045)

Abstract: The beyond-mean-field model is applied to study the octupole deformation and shape transition in 114-124Ba. Potential energy surfaces (PES), low-energy excitation spectra, electric transition rates, and probability density distributions in Ba isotopes are systematically analyzed using a quadrupole-octupole collective Hamiltonian (QOCH) model based on covariant density functional theory. The microscopic QOCH model is shown to accurately describe the empirical trend of low-energy positive-and negative-parity states. The theoretical results of PES, low-lying negative-parity bands, rather large B(E3;31- → 01+), and extended probability density distributions show evidence of strong octupole correlations in 114Ba. 116,118Ba present as transitional nuclei, while 120-124Ba are well quadrupole deformed nuclei.

SUN Wei, QUAN Shan, XIANG Jian, LI Zhipan. Beyond-mean-field Study of Octupole Shape Evolution in Neutron-deficient Ba Isotopes[J]. Nuclear Physics Review, 2019, 36(2): 144-150. doi: 10.11804/NuclPhysRev.36.02.144
Citation: SUN Wei, QUAN Shan, XIANG Jian, LI Zhipan. Beyond-mean-field Study of Octupole Shape Evolution in Neutron-deficient Ba Isotopes[J]. Nuclear Physics Review, 2019, 36(2): 144-150. doi: 10.11804/NuclPhysRev.36.02.144
Reference (93)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return