Advanced Search
Volume 36 Issue 2
Jul.  2019
Turn off MathJax
Article Contents

ZHANG Yi, HU Bitao. Nuclear Scattering Experiment Based on the Polarized Helium-3 Target[J]. Nuclear Physics Review, 2019, 36(2): 151-160. doi: 10.11804/NuclPhysRev.36.02.151
Citation: ZHANG Yi, HU Bitao. Nuclear Scattering Experiment Based on the Polarized Helium-3 Target[J]. Nuclear Physics Review, 2019, 36(2): 151-160. doi: 10.11804/NuclPhysRev.36.02.151

Nuclear Scattering Experiment Based on the Polarized Helium-3 Target

doi: 10.11804/NuclPhysRev.36.02.151
Funds:  National Natural Science Foundation of China (U1832167, 11875301)
  • Received Date: 2018-12-10
  • Rev Recd Date: 2019-04-20
  • Publish Date: 2019-06-20
  • The polarized helium-3 target offers a great opportunity of expanding the nuclear physics experiment to observe the impacts of the spin dimension in the initial state on the nuclear reaction. In this work by illustrating the possible applications of the target in the polarized three-body force experiment and in the polarized heavy ion charge exchange reaction, the unique advantage of the polarized helium-3 target was described. In the proton scattering experiment, by measuring the distribution of various products in the final state with various polarization direction, it is possible to further verify the 3-body-force part of the chiral effective theory. In the charge exchange reaction with the heavy ion beam, by control the polarization direction it is possible to distinguish the pion-exchange and rho-meson-exchange terms in the nucleon spin-isospin excitation. Thus it offers a unique opportunity to study the dynamic evolution of nucleon in different nuclear environments. Under the background of constructing the new generation large science facilities in China, specifically the ADS, HIAF, and CNS as the great representations of advanced platform for nuclear physics study, new technology will exploit both the width and depth of reaches on them. Thus the polarized helium-3 target as a unique research method owns a bright perspective.
  • [1] DUTZ H, GOERTZ ST, MEYER W. EPJ Web of Conference, 2017, 134:05001.
    [2] GOERTZ S, MEYER W, REICHERZ G. Prog Part Nucl Phys, 2002, 49:403.
    [3] ROUILLE G, BASSAN M, COMMEAUX C, et al. Nucl Inst Math, 2001, 464:428.
    [4] KOIVUNIEMI J, DOSHITA N, GAUTHERON F, et al. J Phys, 2009, 150:012023.
    [5] BATZ M, NACHER P J, TASTEVIN G. J Phys, 2011, 294:012002.
    [6] WALKER T G, HAPPER W. Rev Mod Phys, 1997, 69:629642.
    [7] WALKER T G. J Phys, 2011, 294:012001.
    [8] ZHANG Y, QIAN X, ALLADA K, et al. Phys Rev C, 2014, 90:055209.
    [9] NING P Z, JIANG H Q, LI G L, et al. Nuclear Probe in High and Medium Energy and the Structure of Nucleus[M]. Shanghai:Shanghai Science and Technology Press, 2012. (in Chinese) (宁平治, 姜焕清, 厉光烈, 等. 中高能核探针与原子核结构[M]. 上海:上海科学技术出版社, 2012.)
    [10] EPELBAUM E, HAMMER H W, MEIBNER U G. Rev Mod Phys, 2009, 81:1773.
    [11] NOGGA A, KAMADA H, GLOCKLE W. Phys Rev Lett, 2000, 85:944.
    [12] NOGGA A, KIEVSKY A, KAMADA H, et al. Phys Rev C, 2003, 64:034004.
    [13] DOLESCHALL P, BORBELY I, PAPP Z, et al. Phys Rev C, 2003, 67:064005.
    [14] HAMMER H, NOGGA A, SCHWENK A. Rev Mod Phys, 2013, 85:197.
    [15] NAVRATIL S P, GUEORGUIEV V G, VARY J P, et al. Phys Rev Lett, 2007, 99:042501.
    [16] PIEPER S C, WIRINGA R B. Annu Rev Nucl Part Sci, 2001, 51:53.
    [17] HAGEN G, HJORTH-JENSEN M, JANSEN G R, et al. Phys Rev Lett, 2012, 109:032502.
    [18] ZUO W, LEJEUNEB A, LOMBARDO U, et al. Nucl Phys A, 2002, 706:418.
    [19] ZUO W, BOMBACI I, LOMBARDO U. Phys Rev C, 1999, 60:024605.
    [20] HEBELER K, LATTIMER J M, PETHICK C J, et al. Phys Rev Lett, 2010, 105:161102.
    [21] STEINER A W, LATTIMER J M, BROWN E F. Astrophys J, 2010, 722:33.
    [22] FUJITA J I, MIYAZAWA H. Prog Theor Phys, 1957, 17:360.
    [23] BROWN G, GREEN A. Nucl Phys A, 1969, 137:1.
    [24] COON S A, SCADRON M D, MCNAMEE P C, et al. Nucl Phys A, 1979, 317:242.
    [25] MCKELLAR B H, RAJARAMAN R. Phys Rev Lett, 1968, 21:450.
    [26] COON S A, SCADRON M D, BARRETT B R. Nucl Phys A, 1975, 242:467.
    [27] COON S A, SCADRON M D, MCNAMEE P C, et al. Nucl Phys A, 1979, 317:242.
    [28] WEINBERG S. Phys Lett B, 1990, 251:288.
    [29] MACHLEIDTA R, ENTEMB D R. Phys Rep, 2011, 503:1.
    [30] KLUG J, BLOMGREN J, ATAC A, et al. Nucl Instr and Meth A, 2002, 489:282.
    [31] BLIDEANU V, LECOLLEY F R, LECOLLEY J F, et al. Phys Rev C, 2004, 70:014607.
    [32] RAHM J, BLOMGREN J, CONDE H, et al. Phys Rev C, 2001, 63:044001.
    [33] SEKIGUCHI K, SAKAI H, WITALA H, et al. Phys Rev C, 2004, 70:014001.
    [34] ERMISCH K, AMIR-AHMADI H R, VAN DEN BERG A M, et al. Phys Rev C, 2005, 71:064004.
    [35] ISHIKAWA S, ROBILOTTA M R. Phys Rev C, 2007, 76:014006.
    [36] KALANTAR-NAYESTANAKI N, EPELBAUM E, MESSCHENDORP J G, et al. Rep Prog Phys, 75:016301.
    [37] FUJITA Y, RUBIO B, GELLETLY W. Prog in Part Nucl Phys, 2011, 66:549.
    [38] OSTERFELD F. Rev Mod Phys 1992, 64:491.
    [39] ICHIMURA M, SAKAI H, WAKASA T. Prog in Part Nucl Phys, 2006, 56:446.
    [40] RAPAPORT J. Annual Review of Nuclear and Particle Science, 1994, 44:109.
    [41] EJIRI H, FREKERS D. J Phys G:Nucl Part Phys, 2016, 43:11LT01.
    [42] TANIHATA I. Nucl Phys A, 1991, 522(1):275.
    [43] UESAKA T. Journal of Physics:Conference Series, 2013, 445(1):12018.
    [44] BERMAN B L, FULTZ S C. Rev Mod Phys, 1975, 47:713.
    [45] VAN DER WOUDE A. Prog in Part Nucl Phys, 1987, 18:217.
    [46] BERTRAND F E. Nucl Phys A, 1981, 354:129.
    [47] TODD-RUTEL B G, PIEKAREWICZ J. Phys Rev Lett, 2005, 95:122501.
    [48] HEGER A, LANGANKE K, MARTINEZ-PINEDO G, et al. Phys Rev Lett, 2001, 86:1678.
    [49] LOC B M, KHOA D T, ZEGERS R G T. Phys Rev C, 2014, 89:024317.
    [50] PUPPE P, FREKERS D, ADACHI T, et al. Phys Rev C, 2011, 84:051305.
    [51] ETHIER J J, MELNITCHOUK W. Phys Rev C, 2013, 88:054001.
    [52] ANANTARAMAN N, WINFIELD J S, AUSTIN S M, et al. Phys Rev Lett, 1986, 57:2375.
    [53] ICHIHARA T, ISHIHARA M, OHNUMA H, et al. Nucl Phys A, 1994, 577:93.
    [54] FREKERS D. Nucl Phys A, 2004, 731:76.
    [55] AVRAMENKO S A, AKSINENKO V D, ANIKINA M K H, et al. Nucl Phys A, 1996, 596:355.
    [56] ETCHEGOYEN A, ETCHEGOYEN MC, IZQUIERDO ED, et al. Phys Rev C, 1988, 38:2124.
    [57] WINFIELD J S, ANANTARAMAN N, AUSTIN S M, et al. Phys Rev C, 1986, 33:1333.
    [58] FUJIWARA M, AKIMUNE H, DAITO I F. Phys Lett B, 1976, 64:417.
    [59] FUJIWARA M, AKIMUNE H, DAITO I, et al. Nucl Instr and Meth A, 1999, 422:484.
    [60] UESAKA T, SHIMOURA S, SAKAI H, et al. Nucl Inst and Meth B, 2008, 266:4218.
    [61] BAZIN D, CAGGIANO J A, SHERRILL B M, et al. Nucl Instr and Meth B, 2003, 204:629.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1390) PDF downloads(100) Cited by()

Proportional views

Nuclear Scattering Experiment Based on the Polarized Helium-3 Target

doi: 10.11804/NuclPhysRev.36.02.151
Funds:  National Natural Science Foundation of China (U1832167, 11875301)

Abstract: The polarized helium-3 target offers a great opportunity of expanding the nuclear physics experiment to observe the impacts of the spin dimension in the initial state on the nuclear reaction. In this work by illustrating the possible applications of the target in the polarized three-body force experiment and in the polarized heavy ion charge exchange reaction, the unique advantage of the polarized helium-3 target was described. In the proton scattering experiment, by measuring the distribution of various products in the final state with various polarization direction, it is possible to further verify the 3-body-force part of the chiral effective theory. In the charge exchange reaction with the heavy ion beam, by control the polarization direction it is possible to distinguish the pion-exchange and rho-meson-exchange terms in the nucleon spin-isospin excitation. Thus it offers a unique opportunity to study the dynamic evolution of nucleon in different nuclear environments. Under the background of constructing the new generation large science facilities in China, specifically the ADS, HIAF, and CNS as the great representations of advanced platform for nuclear physics study, new technology will exploit both the width and depth of reaches on them. Thus the polarized helium-3 target as a unique research method owns a bright perspective.

ZHANG Yi, HU Bitao. Nuclear Scattering Experiment Based on the Polarized Helium-3 Target[J]. Nuclear Physics Review, 2019, 36(2): 151-160. doi: 10.11804/NuclPhysRev.36.02.151
Citation: ZHANG Yi, HU Bitao. Nuclear Scattering Experiment Based on the Polarized Helium-3 Target[J]. Nuclear Physics Review, 2019, 36(2): 151-160. doi: 10.11804/NuclPhysRev.36.02.151
Reference (61)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return