Advanced Search
Volume 36 Issue 2
Jul.  2019
Turn off MathJax
Article Contents

LIU Yongchao, BAI Shiwei, YANG Xiaofei. Development and Prospect of Precision Laser Spectroscopy Techniques for Nuclear Physics Study[J]. Nuclear Physics Review, 2019, 36(2): 161-169. doi: 10.11804/NuclPhysRev.36.02.161
Citation: LIU Yongchao, BAI Shiwei, YANG Xiaofei. Development and Prospect of Precision Laser Spectroscopy Techniques for Nuclear Physics Study[J]. Nuclear Physics Review, 2019, 36(2): 161-169. doi: 10.11804/NuclPhysRev.36.02.161

Development and Prospect of Precision Laser Spectroscopy Techniques for Nuclear Physics Study

doi: 10.11804/NuclPhysRev.36.02.161
Funds:  National Key R&D Program of China (2018YFA0404403); National Natural Science Foundation of China (11875073)
  • Received Date: 2018-11-29
  • Rev Recd Date: 2019-03-03
  • Publish Date: 2019-06-20
  • The nuclear properties (spin, mass, life-time, magnetic moment, electric quadrupole moment and charge radius) of the ground and long-lived states of unstable nuclei can be used to explore the exotic nuclear structure phenomenon, and also will be a prominent input for the nuclear theory methods and nuclear interactions. Experimentally, we can nuclear-model independently determine the nuclear spins, magnetic moments, electric quadrupole moments and mean square charge radii simultaneously from hyperfine structure and isotope shift, measured with the interdisciplinary laser spectroscopy techniques. In recent years, with the continuous efforts, various laser spectroscopy techniques with high resolution and high efficiency have been developed in order to study the short-lived isotopes produced at the radioactive ion beam facilities with very low production yield. Here, we will introduce the basic principle of laser spectroscopy measurement and discuss in detail the various complementary laser spectroscopy techniques developed for the nuclear structure study of unstable isotopes. The advantages and disadvantages of these techniques, such as collinear laser spectroscopy (high resolution, low sensitivity), in-source laser spectroscopy (high sensitivity, low resolution), as well as collinear resonant ionization (high resolution, high sensitivity), are discussed regarding to the resolution and sensitivity, which is highly related to the application of the technique in different mass region of nuclear chart. In addition, future plan and prospect on the development of the precision laser spectroscopy techniques will be discussed, which, with the hope, will be used for nuclear physics study at the next-generation facilities constructed and planed in China.
  • [1] NEYENS G. Rep Prog Phys, 2003, 66:633.
    [2] TANIHATA I, KOBAYASHI T, YAMAKAWA O, et al. Phys Lett B, 1988, 206:592.
    [3] FRICKE G, HEILIG K. Nuclear Charge Radii[M]. Heidelberg:Springer-Verlag, 2004:385.
    [4] YANG X F, COLLAPS and CRIS collaboration. J Phys Conf Ser, 2018, 1024:012031.
    [5] FRANBERG H, DELAHAYE P, BILLOWES J, et al. Nucl Instr and Meth B, 2008, 266:4502.
    [6] PAPUGA J, BISSELL M L, KREIM K, et al. Phys Rev Lett, 2013, 110:172503.
    [7] LU Z T, MUELLER P, DRAKE G W F, et al. Rev Mod Phys, 2013, 85:1383.
    [8] GARCIA RUIZ R F, BISSELL M L, BLAUM K, et al. Phys Rev C, 2015, 91:041304.
    [9] YANG X F, Wraith C, Xie L, et al. Phys Rev Lett, 2016, 116:182502.
    [10] BAI S W, YANG X F. Nuclear Physics Review, 2018, 35:382. (in Chinese) (白世伟, 杨晓菲. 原子核物理评论, 2018, 35:382.)
    [11] DE GROOTE R P, BILLOWES J, BINNERSLEY C L, et al. Phys Rev C, 2017, 96:041302.
    [12] NEUGART R, BILLOWES J, BISSELL M L, et al. J Phys G:Nucl Part Phys, 2017, 44:064002.
    [13] DICKER A R, CAMPBELL P, CHEAL B, et al. Hyperfine Interact, 2014, 227:139.
    [14] MINAMISONO K, MANTICA P F, KLOSE A, et al. Nucl Instr and Meth A, 2013, 709:85.
    [15] VOSS A, PROCTER T J, SHELBAYA O, et al. Nucl Instr and Meth A, 2016, 811:57.
    [16] FEDOSSEEV V, CHRYSALIDIS K, DAY GOODACRE T, et al. J Phys G:Nucl Part Phys, 2017, 44:084006.
    [17] FEDOSSEEV V N, KUDRYAVTSEV YU, MISHIN V I. Phys Scr, 2012, 85:058104.
    [18] FEDOSSEEV V N, FEDOROV D V, HORN R, et al. Nucl Instr and Meth B, 2003, 204:353.
    [19] COCOLIOS T E. Hyperfine Interact, 2017, 238:16.
    [20] MARSH B A, DAY GOODACRE T, SELS S, et al. Nat Phys, 2018, 14:1163.
    [21] COCOLIOS T E, ANDREYEV A N, BASTIN B, et al. Phys Rev Lett, 2009, 103:102501.
    [22] FERRER R, BREE N, COCOLIOS T E, et al. Phys lett B, 2014, 728:191.
    [23] HIRAYAMA Y, MUKAI M, WATANABE Y X, et al. Phys Rev C, 2017, 96:014307.
    [24] BACKE H, EBERHARDT K, FELDMANN R, et al. Nucl Instr and Meth B, 1997, 126:406.
    [25] FERRER R, BARZAKH A, BASTIN B, et al. Nat Commun, 2017, 8:14520.
    [26] ZADVORNAYA A, CREEMERS P, DOCKX K, et al. Phys Rev X, 2018, 8:041008.
    [27] SANCHEZ R, NORTERSHAUSER W, EWALD G, et al. Phys Rev Lett, 2006, 96:033002.
    [28] NORTERSHAUSER W, TIEDEMANN D, ZAKOVA M, et al. Phys Rev Lett, 2009, 102:062503.
    [29] FLANAGAN K T, VINGERHOETS P, AVOGULEA M, et al. Phys Rev Lett, 2009, 103:142501.
    [30] GARCIA RUIZ R F, BISSELL M L, BLAUM K, et al. Nat Phys, 2016, 12:594.
    [31] WRAITH C, YANG X F, XIE L, et al. Phys Lett B, 2017, 771:385.
    [32] YANG X F, TSUNODA Y, BABCOCK C, et al. Phys Rev C, 2018, 97:044324.
    [33] NEYENS G, KOWALSKA M, YORDANOV D, et al. Phys Rev Lett, 2005, 94:022501.
    [34] YORDANOV D T, BISSELL M L, BLAUM K, et al. Phys Rev Lett, 2012, 108:042504.
    [35] GARCIA RUIZ R F, GORGES C, BISSELL M, et al. J Phys G:Nucl Part Phys, 2017, 44:044003.
    [36] DE GROOTE R P, BILLOWES J, BINNERSLEY C L, et al. Phys Rev C, 2017, 96:041302.
    [37] LYNCH K M, BILLOWES J, BISSELL M L, et al. Phys Rev X, 2014, 4:011055.
    [38] DE GROOTE R P, BUDINČEVIĆ I, BILLOWES J, et al. Phys Rev lett, 2015, 115:132501.
    [39] GARCIA RUIZ R F, VERNON A R, BINNERSLEY C L, et al. Phys Rev X, 2018, 8:041005.
    [40] LYNCH K M, WILKINS S G, BILLOWES J, et al. Phys Rev C, 2018, 97:024309.
    [41] BEHR J A, GWINNER G. J Phys G:Nucl Part Phys, 2009, 36:033101.
    [42] WANG L B, MUELLER P, BAILEY K, et al. Phys Rev Lett, 2004, 93:142501.
    [43] MUELLER P, SULAI I A, VILLARI A C C, et al. Phys Rev Lett, 2007, 99:252501.
    [44] PARKER R H, DIETRICH M R, KALITA M R, et al. Phys Rev Lett, 2015, 114:233002.
    [45] JIANG W, BAILEY K, LU Z-T, et al. Geochim Cosmochim Acta, 2012, 91:1.
    [46] XIA X W, LIM Y, ZHAO P W, et al. Atom Data Nucl Data Tables, 2018, 121:1.
    [47] WADA M, TAKAMINE A, OKADA K, et al. AIP Conf Proc, 2009, 1120:109.
    [48] YANG X F, TAKESHI F, TAKASHI W, et al. Phys Rev A, 2014, 90:052516.
    [49] LIU W P, BAI X X, ZHOU S H, et al. Phys Rev Lett, 1996, 77:611.
    [50] SUN Z, ZHAN W L, GUO Z Y, et al. Nucl Instr and Meth A, 2003, 503:496.
    [51] ZHOU X H. Nuclear Physics Review, 2018, 35:339.
    [52] XIAO G Q, XU H S, WANG S C. Nuclear Physics Review, 2017, 34:275. (in Chinese). (肖国青, 徐瑚珊, 王思成. 原子核物理评论, 2017, 34:275.)
    [53] YE Y L. EPJ Web Conf, 2018, 178:01005.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1887) PDF downloads(210) Cited by()

Proportional views

Development and Prospect of Precision Laser Spectroscopy Techniques for Nuclear Physics Study

doi: 10.11804/NuclPhysRev.36.02.161
Funds:  National Key R&D Program of China (2018YFA0404403); National Natural Science Foundation of China (11875073)

Abstract: The nuclear properties (spin, mass, life-time, magnetic moment, electric quadrupole moment and charge radius) of the ground and long-lived states of unstable nuclei can be used to explore the exotic nuclear structure phenomenon, and also will be a prominent input for the nuclear theory methods and nuclear interactions. Experimentally, we can nuclear-model independently determine the nuclear spins, magnetic moments, electric quadrupole moments and mean square charge radii simultaneously from hyperfine structure and isotope shift, measured with the interdisciplinary laser spectroscopy techniques. In recent years, with the continuous efforts, various laser spectroscopy techniques with high resolution and high efficiency have been developed in order to study the short-lived isotopes produced at the radioactive ion beam facilities with very low production yield. Here, we will introduce the basic principle of laser spectroscopy measurement and discuss in detail the various complementary laser spectroscopy techniques developed for the nuclear structure study of unstable isotopes. The advantages and disadvantages of these techniques, such as collinear laser spectroscopy (high resolution, low sensitivity), in-source laser spectroscopy (high sensitivity, low resolution), as well as collinear resonant ionization (high resolution, high sensitivity), are discussed regarding to the resolution and sensitivity, which is highly related to the application of the technique in different mass region of nuclear chart. In addition, future plan and prospect on the development of the precision laser spectroscopy techniques will be discussed, which, with the hope, will be used for nuclear physics study at the next-generation facilities constructed and planed in China.

LIU Yongchao, BAI Shiwei, YANG Xiaofei. Development and Prospect of Precision Laser Spectroscopy Techniques for Nuclear Physics Study[J]. Nuclear Physics Review, 2019, 36(2): 161-169. doi: 10.11804/NuclPhysRev.36.02.161
Citation: LIU Yongchao, BAI Shiwei, YANG Xiaofei. Development and Prospect of Precision Laser Spectroscopy Techniques for Nuclear Physics Study[J]. Nuclear Physics Review, 2019, 36(2): 161-169. doi: 10.11804/NuclPhysRev.36.02.161
Reference (53)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return