Advanced Search
Volume 36 Issue 2
Jul.  2019
Turn off MathJax
Article Contents

ZHANG Jing, ZHOU Liangfu, CHEN Shuangqiang, HE Wenhao, SU Xue, YANG Dongyan, LI Yuhong. Study on Helium Diffusion in bcc Tungsten Under Uniaxial Stress Field by Molecular Dynamics Simulation[J]. Nuclear Physics Review, 2019, 36(2): 261-265. doi: 10.11804/NuclPhysRev.36.02.261
Citation: ZHANG Jing, ZHOU Liangfu, CHEN Shuangqiang, HE Wenhao, SU Xue, YANG Dongyan, LI Yuhong. Study on Helium Diffusion in bcc Tungsten Under Uniaxial Stress Field by Molecular Dynamics Simulation[J]. Nuclear Physics Review, 2019, 36(2): 261-265. doi: 10.11804/NuclPhysRev.36.02.261

Study on Helium Diffusion in bcc Tungsten Under Uniaxial Stress Field by Molecular Dynamics Simulation

doi: 10.11804/NuclPhysRev.36.02.261
Funds:  National Natural Science Foundation of China (11775102, 11475076)
  • Received Date: 2018-11-12
  • Rev Recd Date: 2019-02-12
  • Publish Date: 2019-06-20
  • The effect of uniaxial stress field along <100> and <111> crystal direction on the diffusion of a single helium atom in bcc tungsten was studied by molecular dynamics simulation. Our calculation shows that the stress strain caused the phase transition of tungsten metal and the initio phase transition strain decreases with the increase of temperature. The initial strain of phase transition is near the strain where stress reaches the maximum value. The diffusion coefficient of a single helium atom in tungsten metal decreases with the increase of strain. The helium diffusion coefficient decreases linearly along the <100> crystal direction, while the <111> crystal direction shows a fluctuating trend. Fitting the Arrhenius equation, the results show that when the crystal strain along <100> reaches +1.5% and the Arrhenius equation is no longer applicable; however, the Arrhenius equation still applies when the crystal strain along <111> increases by +5%. The helium diffusion activation energy along the crystal direction <111> was obtained, the results showed that the helium diffusion activation energy decreases with the increase of strain, indicating that the strain enhanceds the mobility of a single helium atom in tungsten.
  • [1] DUFFY D. Phil Trans R Soc A, 2010, 368:3315.
    [2] PINTSUK G, KONINGS R J. Comprehensive Nuclear Materials, 2012,415:S2.
    [3] WEI Q, LI N, SUN K, et al. Scripta Materialia, 2010, 63:430.
    [4] HETHERLY J, MARTINEZ E, DI Z F, et al. Scripta Materialia, 2012, 66:17.
    [5] WANG J, GAO X, GAO N, et al. Journal of Nuclear Materials, 2015, 457:182.
    [6] DING M, DU J, WAN L, et al. Nano Lett, 2016, 16:4118.
    [7] PARISH C M, HIJAZI H, MEYER H M, et al. Acta Materialia, 2014, 62:173.
    [8] KAJITA S, YOSHIDA N, OHNO N, et al. New J Phys, 2015, 17:043038.
    [9] NOIRI Y, KAJITA S, OHNO N. Journal of Nuclear Materials, 2015, 463:285.
    [10] YANG Q, YOU Y, LIU L, et al. Sci Rep, 2015, 5:10959.
    [11] TAN X, LUO L, CHEN H, et al. Sci Rep, 2015, 5:12755.
    [12] ATWANI E, GONDERMAN S, SUSLOV S, et al. Fusion Engineering and Design, 2015, 93:9.
    [13] MIYAMOTO M, MIKAMI S, NAGASHIMA H, et al. Journal of Nuclear Materials, 2015, 463:333.
    [14] PEREZ D, VOGE T. Phys Rev B, 2014, 90:014102.
    [15] LI X, SHU X, TAO P. Journal of Nuclear Materials, 2014, 455:544.
    [16] LI X, LIU Y, YI Y. Journal of Nuclear Materials, 2014, 451:356.
    [17] WANG J, ZHANG Y, ZHOU H, et al. Journal of Nuclear Materials, 2015, 461:230.
    [18] HU L, KARL D, HAMMOND K, et al. Surface Science, 2014, 626:21.
    [19] KOBAYASHI R, HATTORI T, TADMURA T, et al. Journal of Nuclear Materials, 20115, 463:1071.
    [20] WANG J, NIU L, SHU X, et al. Nucl Fusion, 2015, 55:092003.
    [21] SANDOVAL L, PEREZ D, BLAS P, et al. Phys Rev Lett, 2015, 114:105502.
    [22] YANG L, DENG H, GAO F, et al. Nucl Instr and Meth B, 2013, 303:68.
    [23] YANG L, GAO F, KURTZ R, et al. Acta Materialia, 2015, 97:86.
    [24] GUAN W, FUKUDA M, NOGAMI S, et al. Plasma and Fusion Research, 2014, 9:1405143.
    [25] LIU Q, LI M, WANG S, et al. Annals of Nuclear Energy, 2015, 85:12.
    [26] PAK S, JHANG H, KEUN O, et al. Fusion Engineering and Design, 2013, 88:3224.
    [27] LEE Y, KU D. Fusion Engineering and Design, 2015, 98-99:1825.
    [28] ZHU C, SONG Y, PENG X, et al. Journal of Nuclear Materials, 2016, 469:120.
    [29] PAK S, CHEON M, SEON C, et al. Fusion Engineering and Design, 2017, 124:591.
    [30] WANG J, HOU Q, SUN T, et al. Journal of Applied Physics, 2007, 102:093510.
    [31] PLIMPTON S. J Comput Phys, 1995, 117:1.
    [32] ACKLAND G, THETFORD R. Philos Mag A, 1987, 56:15.
    [33] BECK D. Molecular Physics, 1968, 14:311.
    [34] JUSLIN N, WIRTH B. Journal of Nuclear Materials, 2013, 432:61.
    [35] LONG X, WANG D, SETYAWAN W, et al. Physica Status Solidi, 2017, 215(1):1700494.
    [36] TAN X, LUO L, CHEN H, et al. Scientific Reports, 2015, 5:12755.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1179) PDF downloads(71) Cited by()

Proportional views

Study on Helium Diffusion in bcc Tungsten Under Uniaxial Stress Field by Molecular Dynamics Simulation

doi: 10.11804/NuclPhysRev.36.02.261
Funds:  National Natural Science Foundation of China (11775102, 11475076)

Abstract: The effect of uniaxial stress field along <100> and <111> crystal direction on the diffusion of a single helium atom in bcc tungsten was studied by molecular dynamics simulation. Our calculation shows that the stress strain caused the phase transition of tungsten metal and the initio phase transition strain decreases with the increase of temperature. The initial strain of phase transition is near the strain where stress reaches the maximum value. The diffusion coefficient of a single helium atom in tungsten metal decreases with the increase of strain. The helium diffusion coefficient decreases linearly along the <100> crystal direction, while the <111> crystal direction shows a fluctuating trend. Fitting the Arrhenius equation, the results show that when the crystal strain along <100> reaches +1.5% and the Arrhenius equation is no longer applicable; however, the Arrhenius equation still applies when the crystal strain along <111> increases by +5%. The helium diffusion activation energy along the crystal direction <111> was obtained, the results showed that the helium diffusion activation energy decreases with the increase of strain, indicating that the strain enhanceds the mobility of a single helium atom in tungsten.

ZHANG Jing, ZHOU Liangfu, CHEN Shuangqiang, HE Wenhao, SU Xue, YANG Dongyan, LI Yuhong. Study on Helium Diffusion in bcc Tungsten Under Uniaxial Stress Field by Molecular Dynamics Simulation[J]. Nuclear Physics Review, 2019, 36(2): 261-265. doi: 10.11804/NuclPhysRev.36.02.261
Citation: ZHANG Jing, ZHOU Liangfu, CHEN Shuangqiang, HE Wenhao, SU Xue, YANG Dongyan, LI Yuhong. Study on Helium Diffusion in bcc Tungsten Under Uniaxial Stress Field by Molecular Dynamics Simulation[J]. Nuclear Physics Review, 2019, 36(2): 261-265. doi: 10.11804/NuclPhysRev.36.02.261
Reference (36)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return