46. 6MeV/u 12C$^{6+}$离子对四种作物种子的生物学效应研究

卫增武 刘玉林 王桂玲 陈学兵 李惠玲
(中国科学院近代物理研究所 兰州 730000)
杨汉民 江丽红 高清祥 王崇英 王亚巍
(兰州大学 兰州 730000)

摘要 在中科院近代物理研究所兰州高能重离子装置(HIRFL)上，采用46.6MeV/u 12C$^{6+}$离子对四种不同作物种子进行了生物效应研究。结果表明，重离子的轰击和穿透，不仅会改变种子表面外貌而且也会种子内部细胞造成严重损伤。重离子对种子萌发前的生长发育有明显的抑制作用，对生物功能也有影响，这在种子的根尖细胞内出现的染色体畸变具有多种类型，且畸变频率明显高于对照组。重离子对多种细胞器也产生了严重损伤，破坏DNA具有一定的修复能力。研究了种子和作物种子的半致死剂量及存活率，探索了种子和闽式种子之间辐射敏感性的差异，讨论了细胞器损伤与生物过程异常的关系和受DNA修复过程。

关键词 重离子，生物效应，辐射敏感性，染色体畸变及频率，细胞器，DNA，损伤及修复

1 引言

辐射生物学发展至今已有近百年的历史，但把重离子束作为诱变源用于各种生物效应的研究还是近二三十年的事，与X、γ或中子等中性粒子相比，重离子在物理和生理学上具有独特的优势：(1) 传能线密度(LET)大，大体活化作用强，具有较高的诱发突变频率；(2) 重离子在能量沉积过程中，其射程末端存在着一个尖锐的能量损失峰(Bragg peak)，使能量沉积具有高度的空间分辨性，产生明显的区域效应是局部的和可选择的，不仅在存活率较高的情况下可得到较高的突变率，而且有可能定向诱变；(3) 重离子诱变参数样，有利于实验条件的控制；(4) 重离子损伤的生物分子和细胞，通常不易修复，使突变体较快稳定。

正因为重离子在基因剂量效应方面具有这种特性，近年来，美、德、俄和日本等拥有大型重离子加速器的国家相继开展研究，不仅在辐射诱变、辐射治疗，而且在模拟空间宇宙重离子对生物影响方面，取得了许多进展。1989年10月，中科院近代物理研究所兰州高能重离子加速器正式建成，次年，我们在该装置上采用大面神束靶技术，用46.6MeV/u 12C$^{6+}$离子束对四种不同作物种子进行照射，研究了其形态学、细胞学、生理化学和遗传学效应，为深入研究重离子作物育种和对空间重金属粒子的生物效应进行模拟研究奠定初步基础。

2 材料与方法

2.1 供试材料

重离子辐照的四种作物种子是：小麦、玉米作物白兰瓜、饲料作物山葵豆和药用作物枸杞。

2.2 辐射前处理方法

辐射前，挑选大小均匀、颗粒饱满和无损伤无病虫污染的风干种子，用15%明胶液将其粘在直径40mm的聚四氟乙烯小盘中，种胚朝上，按同心圆排列，每个盘50~250粒，每个小盘固定于一个可旋转的大塑料盘上。

2.3 辐射过程及重离子参数

将每个装有大塑料转盘安装在HIRFL辐照装置上，置于常温常压大气环境中，由步进马达带动，依次接受照射，剂量数据获取与样品更换均由微机自动操作，另以未照种子作对照。

* 国家自然科学基金委和甘肃省自然科学基金委资助课题
诱变源是电荷态为+6价的碳离子束，初始能量为47.8 MeV/u，因采用束射技术，在它们到达种子样品前扣除真空隔离Ni窗及一 层空气间的能量后，最终能量为46.6 MeV/u，大面积束流是通过靶子上游约6m处采用散射的方法得到的。离子流密度分别为1.43×10^8、4.19×10^7、2.6×10^7、1.8×10^6、1.08×10^5和1.66×10^7p/cm²。在辐照装置样品环境中，次级辐射水平为γ在25.3 mSv/h左右，n在6.3 $\times 10^8$ n/s·cm²左右。2.4 辐照后的处理方法

辐照后将种子用50℃温水浸泡数分钟，除去粘附在上面的胶状物。

萌发试验的处理见文献[3]。呼吸强度（O₂μl/b·8mg）的测定是采用华氏微氧呼吸计对萌发种子进行碱液法测定，操作过程中恒温25℃。种子浸泡后每隔5~6小时测量一次，细胞学观察处理见文献[4]，在显微镜下每个剂量组至少观察10个根尖，共计10000个细胞，统计胚根细胞中染色体畸变类型和频率。同时，将发芽2~7天的胚根和胚芽经固定和超薄切片制样，在透射电镜上观察其细胞器的结构变化。DNA合成过程的处理是采用H-ThTdR标记法。取培养不同时间的每组种子20mg，分别加入0.4ml H-TdR，在25℃标记4小时。然后用去污液反复冲洗，将其转移至5ml离心管，在80℃上干燥8小时，再加入四滴HCl和四滴H₂O₂，再加入四滴H₂O₂，在80℃消化6小时，最后用4ml无水酒精和6ml二氯化液将消化液全部转入测量瓶进行测量。

3 实验结果与讨论

3.1 对作物种子外表与内部的损伤

由电镜观察到小麦种子受C⁺⁺离子束照射后外表面变化，在胚部和顶部分别出现皱褶和干缩现象；在种子内，由于离子的贯穿胚乳受损，出现塌陷和空洞，细胞内含物质失去，干枯收缩。出现许多细胞空洞（细胞质带）等。

3.2 对四种作物种子萌发和生长发育的影响

由不同剂量C⁺⁺离子束照射小麦、白兰
表 1 46.6 MeV/u 14C+离子辐照四种不同作物种子后萌发率的回归分析

<table>
<thead>
<tr>
<th>作物品种</th>
<th>a (um²)</th>
<th>x</th>
<th>r **</th>
</tr>
</thead>
<tbody>
<tr>
<td>山黧豆</td>
<td>5.2</td>
<td>102</td>
<td>0.999 **</td>
</tr>
<tr>
<td>白兰瓜</td>
<td>16.4</td>
<td>118</td>
<td>0.995 **</td>
</tr>
<tr>
<td>枸杞</td>
<td>18.5</td>
<td>118</td>
<td>0.988 **</td>
</tr>
<tr>
<td>小麦</td>
<td>307 (对 D_{10} = 5.6×10⁶ p/cm²)</td>
<td>18.1</td>
<td>0.992 **</td>
</tr>
</tbody>
</table>

注释: 回归公式 $Y = a + bx$ ($Y = 1/n$ - $σ^2$)。

$σ$: 失活截面(回归系数) x: 外推数
r: 相关系数 $*$: 在 $σ < 0.01$ 情况下，
r: 显著性。

表 2 14C+离子对四种不同作物种子的半致死剂量、失活截面和染色体畸变频率

<table>
<thead>
<tr>
<th></th>
<th>小麦</th>
<th>山黧豆</th>
<th>枸杞</th>
<th>白兰瓜</th>
</tr>
</thead>
<tbody>
<tr>
<td>半致死剂量 D_{50} (p/cm²)</td>
<td>5.6×10⁶</td>
<td>6.5×10⁶</td>
<td>5×10⁶</td>
<td>1.3×10⁷</td>
</tr>
<tr>
<td>失活截面 a (um²)</td>
<td>307</td>
<td>18.4</td>
<td>18.5</td>
<td>5.2</td>
</tr>
<tr>
<td>染色体畸变 f (%)</td>
<td>2.60~</td>
<td>2.58~</td>
<td>1.34~</td>
<td>0.09~</td>
</tr>
<tr>
<td>变异频率 f (%)</td>
<td>17.98</td>
<td>7.15</td>
<td>4.87</td>
<td>0.28</td>
</tr>
<tr>
<td>(对照组) f (%)</td>
<td>(0.04)</td>
<td>(0.53)</td>
<td>(0.15)</td>
<td>(0.01)</td>
</tr>
</tbody>
</table>

实验中观察到了，种子萌发结束后，小麦胚芽鞘高度，山黧豆幼苗高度，白兰瓜和枸杞主根长度等生长势随 14C+离子不同剂量的抑制情况，在小麦生长过程中，出现过双苗植株。

3.3 对呼吸代谢的影响

图 2 半显示了枸杞种子在接受了不同剂量后，对萌发后期(以 212 小时为例)呼吸强度的影响。由图可见，各不同剂量受照组呼吸强度均受抑制，抑制程度与剂量呈正相关性。

3.4 对根尖细胞染色体畸变的影响

14C+离子辐照小麦和枸杞后根尖细胞中出现的染色体畸变类型有：微核，核膜，核仁，多核，畸形核，细胞核，染色体棒状、断片，染色体粘连，游离染色体与环状染色体等。文献[4]给出了四种不同作物胚根细胞中染色体畸变频率随照照剂量变化的趋势。四种作物的总畸变率变

化于 (0.09~17.98) %之间，超出对照组几倍，几十倍乃至几百倍。对 14C+离子最敏感的是小麦，最迟钝的是白兰瓜，枸杞和山黧豆居中。在剂

量为 $1.08×10^{10}$ p/cm² 时，微核率分别是：小麦为 11.88 %，枸杞为 4.66 %，山黧豆为 1.08 %，白兰瓜为 0。这个辐射敏感性按序与上表萌

发的顺序是致的。畸变频率与剂量呈正相关性，较为特殊的是，在剂量 $1.08×10^{10}$ p/cm² 下照射小麦与山黧豆种子后，这种畸变频率反而有所下降，这可能是由于剂量过大，严重抑制了细胞分裂过程，降低了细胞分裂指数，从而减少了细胞分裂过程中再次出现结构变化所

致，见文献[4]中表 2。

染色体是遗传物质的载体，基因直线排列在其上，染色体结构变异将会导致基因缺失，重复或重组（倒位或易位），在表型上就会出现各种突变体，小麦 M。花粉出现双萌发孔就是突变体的一个代表性例子。这类突变体一经稳定下来就具有遗传效应，这说明有可能把重子束作为一种新的诱变源用于作物辐射育种。

3.5 对指细胞结构的影响

14C+离子对小麦萌发 3~7 天后胚根和胚芽中细胞器细胞质结构可产生明显的变异，其中有染色体畸变的微核类型，线粒体形态异
Research into Biological Effects of 12C$^+$ Ions with 46. 6MeV/u on Four Kinds of Plant Seeds

Wei Zengquan Liu Yuyan Wang Guiling Chen Xuebing Li Huiling
(Institute of Modern Physics, Academia Sinica, Lanzhou 730000)
Yang Hanmin Wang Lihong Gao Qingxiang Wang Chongying Wang Yafu
(Lanzhou University, Lanzhou 730000)

Abstract The biological effects of 46. 6MeV/u 12C$^+$ ions on four kinds of plant seeds were studied at HIRFL of Institute of Modern Physics (IMP), Academia Sinica. The results indicate that serious injuries were presented on not only external features of the seeds but also internal cells (下转 47 页)
段。
采用具有加速能力的重离子冷却储存环
和一般的后加速器相比，主要有下列特点：
(1) 储存、加速不稳定奇异核，可使单一的
奇异核次级束的强度达 10^9-10^{10}pps；
(2) 束流在环内可保持 ≥ 10 小时，即没有
产生反应的束流可在环内重复轰击内靶进行
实验；
(3) 储存环对原有加速器注入要求宽松，
注入时间端存储运行时间，这就减少对原有设
备运行状况的依赖。

在这样的装置上可进行各种不阻止束流
的内靶实验和瞬间的外靶实验，这无疑是奇异
核研究开创核物理研究新纪元的实现。

参考文献

1. Tanihata I. Treatise on Heavy Ion Science, 1989, 8

Studies and Progress of Exotic Nuclei with
Radioactive Beam at HIRFL

Zhan Wenlong
(Institute of Modern Physics, Academia Sinica, Lanzhou 730000)

Abstract The researches with Radioactive Nucleon Beam (RNB) at HIRFL is proposed as three
stages. 1) Modification of post beam transport line as Projectile Fragmentation (PF) type RNB under
construction. 2) High quality (PF) RNB being designed. 3) Storage ring (with accelerating ability) is
perspective. Meantime, the progress of 1st stage RNB at HIRFL is described.

Key Words radioactive nucleon beam (RNB), projectile fragmentation, storage ring.

(上接 64 頁)

due to the bombardment and penetration of the ions. The heavy ions can significantly inhibit
germination and growth of the seeds and can affect physiological functions. In root tip cells of
irradiated seeds, a great variety of chromosomal aberrations were observed and the aberration
frequencies were greatly higher than that of the corresponding controls. Serious damages of some
organelles were induced by the ions. Damaged DNA can be repaired to some extent. Median lethal
doses and inactivation cross — sections of the four kinds of plant seeds are determined and the
differences of radiation sensitivity between different seeds are found. The correlations of organelle
damages with abnormal physiological processes and the repairing process of damaged DNA are
discussed.

Key Words heavy ion, biological effect, radiation sensitivity, chromosomal aberration and
frequency, organelle, DNA, damage and repair.