文章编号: 1007-4627(2013) 02-0117-05

⁷Li+¹¹B体系唯象光学势的研究

杨磊,林承键,杨峰,贾会明,徐新星,张焕乔,刘祖华,张世涛,包鹏飞,孙立杰 (中国原子能科学研究院,北京 102413)

摘要: 实验测量了⁷Li+¹¹B体系的弹性散射角分布,其中弹核⁷Li的入射能量分别为9.85,13.3,18.3,23.3 和28.3 MeV,测量的角度范围为θ_{c.m.} ≈ 15°~80°。通过对本次实验数据以及文献中34 MeV 的数据拟合,抽取了该体系的唯象光学势参数。结果表明,在固定作用势形状因子下,势深度与能量具有线性相依的关系:实部深度随着弹核能量的增加而线性减小,而虚部深度则在平均值10.35 MeV 附近变化。

关键词: 弱束缚核反应; 奇A轻核反应; 弹性散射角分布; 光学模型势; 能量相依性 中图分类号: O571.6 文献标志码: A DOI: 10.11804/NuclPhysRev.30.02.117

1 引言

随着各种放射性束流装置的建成, 使奇特核结 构与反应的研究成为当前核物理研究的热点之一。 对绝大多数放射性核参与的核反应体系,其光学势 通常是未知的。一般抽取光学势的有效办法是:通 过实验测量体系的弹性散射角分布, 然后用光学模 型计算拟合实验角分布来抽取体系的光学势参数。 但是由于受到目前放射性束流的种类、强度和品质 的限制,相关的实验结果存在着相对较大的不确定 性[1-4]。利用稳定核的转移反应作探针,通过拟合 转移反应的角分布来研究出射道奇特核体系的性 质,并抽取奇特核体系的光学势参数是研究奇特核 性质的间接而有效的方法^[5-9]。例如,可以分别通 过⁷Li+¹¹B体系的单质子和单中子的转移反应来研究 出射道⁶He+¹²C以及⁶Li+¹²B体系的相互作用光学势。 入射道弹靶相互作用的能量相依的光学势参数在这 种间接方法中尤为重要。目前关于弱束缚核^{6,7}Li存 在大量的弹性散射数据^[10]。Cook^[11]的研究结果表明, 在大范围的靶核质量数(A = 6~208)和宽的能量范 围 ($E = 5 \sim 156$ MeV)内, ^{6,7}Li的光学势参数存在振 荡,难以抽取普适的光学势参数。这是因为光学势 参数对弹核和靶核的结构非常敏感。这种结构效应 在⁷Li+¹¹B的轻体系中更加明显。根据Feshbach的光 学模型的微观理论^[12],在处理弱束缚核^{6,7}Li的弹性 散射过程中,需要考虑动力学极化势的影响。然而, 动力学极化势的精确计算非常复杂,并且需要弹核及 靶核结构的明确信息^[2,13–14]。除光学模型外,双折叠 模型是处理核-核相互作用的有效的微观方法。然而这 种微观模型无法成功描述^{6,7}Li的弹散角分布^[15]。考 虑了集团效应的双折叠模型是描述这种轻体系相互作 用的有效方法^[16–21]。但是该方法仅限于势实部的计 算,对于势的虚部仍然需要唯象的方法表述。

光学模型是研究核-核相互作用的基本方法。 唯象的光学势参数可以通过拟合弹性散射角分布 的实验数据得到。本工作选择⁷Li+¹¹B作为研究对 象,这是因为: ⁷Li与¹¹B都为奇A核,且基态都有 大的四极矩,集团结构明显。实验中,我们测量了 入射能量 E_{lab} (⁷Li)=9.85,13.3,18.3,23.3和28.3 MeV, 在 $\theta_{c.m.} \approx 15^{\circ} \sim 80^{\circ}$ 的角度范围内的弹性散射角分布。 对本次实验数据与文献[22-23]中 E_{lab} (⁷Li) = 34 MeV 的弹散角分布进行了光学模型分析,并对该体系唯象 光学势参数的能量相依性进行了研究和讨论。

2 实验过程

本次实验是在中国原子能科学研究院串列加速器

收稿日期: 2012-12-11; 修改日期: 2013-01-06

基金项目: 国家自然科学基金资助项目(10727505, 10975192)

作者简介:杨磊(1985-),男,山东威海人,博士研究生,从事实验核物理研究; E-mail: yanglei@ciae.ac.cn.

http://www.npr.ac.cn

国家重点实验室HI-13串列加速器上进行的。实验中 弹核⁷Li的能量分别为9.85, 13.3, 18.3, 23.3 和28.3 MeV, 流强约为100 enA。 靶为厚度55 µg/cm²的自 支撑天然B靶(¹¹B约占80%)。弹性散射角分布的测 量,通过固定在反应靶室顶盖上的4个金硅面垒半 导体探测器实现。靶室盖可以做360°旋转。探测器 角度间隔为10°,测量时以2°为间隔转动,测量的范 围为 $\theta_{cm} \approx 15^{\circ} \sim 80^{\circ}$ 。在靶室相应束流中心±10°处, 分别放置一个金硅面垒半导体探测器作为监视器。通 过拟合监视器弹散峰面积计数,对反应的微分截面 进行相对归一。靶室内探测器布局图如图1所示。前 级放大器固定在真空靶室中,与探测器直接连接,从 而有效地降低了噪声, 使探测器的分辨(FWHM)达 到30~40 keV。图2显示了实验获得的典型能谱,图 中所标注的B同位素弹性散射峰位置由探测器能量刻 度得到。由图2可见,¹¹B的弹散峰清晰可辨,来自同 位素¹⁰B 的弹散峰及其他峰位的干扰可以排除。但是 由于受到多重散射和非弹等原因造成的能谱低能部分 拖尾的影响, 探测器对¹⁰B 弹性散射峰的分辨要明显

 $E_{lab}(^{7}Li)=13.3 \text{ MeV}, \theta_{lab}=15^{\circ}; *标记的峰为靶上的沾污造成; 点线、虚线和实线分别表示线性本底、三高斯拟合以及两者之和。$

差于¹¹B的弹散峰。而此低能拖尾的影响对于¹¹B的 弹散峰可以忽略,因此可以精确得到⁷Li+¹¹B弹性散 射的微分截面。能谱通过线性本底(点线)加上三高 斯方程(虚线)进行拟合,结果如实线所示。实验所 得⁷Li+¹¹B体系的弹性散射角分布如图3所示。图中 误差包含了统计误差以及能谱的拟合误差。

图 3 ⁷Li+¹¹B 弹性散射角分布

空心圆为实验数据点,虚线为固定光学势几何参数条件下 的拟合结果,实线表示由表1内参数计算得到的拟合结果。

3 数据分析及讨论

光学势一般可写为相互作用的实部、虚部以及库 仑势之和的形式:

$$U(r) = -V f_{\rm R}(r) - iW f_{\rm I}(r) + V_{\rm C}(r) , \qquad (1)$$

其中形状因子 $f_{\mathbf{R}}(r)$ 及 $f_{\mathbf{I}}(r)$ 采用 Woods-Saxon 形式:

$$f_{\rm x}(r) = \left[1 + \exp\left(\frac{r - r_{0\rm x}(A_{\rm P}^{1/3} + A_{\rm T}^{1/3})}{a_{\rm x}}\right)\right]^{-1}, \, {\rm x} = {\rm R}, \, {\rm I},$$
(2)

A_P和A_T分别为弹核及靶核的质量数。 库仑势V_C的形式为

$$V_{\rm C} = \begin{cases} \frac{(3R_{\rm C}^2 - r^2)Z_{\rm P}Z_{\rm T}e^2}{2R_{\rm C}^2} & r < R_{\rm C} \\ \frac{2R_{\rm C}^2}{r} & r \ge R_{\rm C} \end{cases}$$
(3)

http://www.npr.ac.cn

其中 $R_{\rm C} = r_{0\rm C}(A_{\rm P}^{1/3} + A_{\rm T}^{1/3})$ 。在整个拟合过程中,将 $r_{0\rm C}$ 固定为1.3 fm。由于实验未采用极化束,因此相 互作用势中不包含自旋-轨道耦合项。我们采用程 序PTOLEMY^[24]对⁷Li+¹¹B弹性散射角分布进行拟合, 抽取光学势参数{ X_i } = { $V, r_{0V}, a_V, W, r_{0W}, a_W$ },并 通过 χ^2 检验来寻求最佳拟合值。 χ^2 定义如下:

$$\chi^{2} = \sum_{i=1}^{N} \left[\frac{\sigma_{\rm th}(\theta_{i}) - \sigma_{\rm exp}(\theta_{i})}{\Delta \sigma_{\rm exp}(\theta_{i})} \right]^{2} , \qquad (4)$$

其中 $\sigma_{th}(\theta_i), \sigma_{exp}(\theta_i)$ 以及 $\Delta\sigma_{exp}(\theta_i)$ 分别为 θ_i 处的理论 计算截面、实验截面及相应的误差。首先用网格方 法对所有6个势参数进行最佳拟合。从最佳拟合中抽 取了几何参数的平均值: $r_{0V} = 0.93$ fm, $a_V = 0.51$ fm, $r_{0W} = 1.21$ fm, 以及 $a_W = 0.90$ fm,并将几何参数固定, 对势深度进行重新拟合。按由此得到的光学势参数 对该体系的弹散角分布进行了计算,结果见图3中虚 线所示。为了进一步优化拟合结果,将几何参数在平 均值附近做微小调整,并重新拟合,最终得到的最佳 光学势参数见表1。由表1 可见,虚部的作用半径和 弥散参数都要明显大于实部的值,这可能是由于⁷Li 及¹¹B 基态都有较大的四极矩造成的。利用该势参数, 对实验中各能点的弹散角分布进行了计算,结果见 图3中实线所示。结果表明,在实验测量的角度范围 内,理论计算结果与实验结果符合得相当好。

除了本次的实验数据外,还选用了文献[22-23] 的数据,对⁷Li入射能量*E*_{lab}(⁷Li)=34 MeV 的数据进行 了分析,对质心系90°之前的数据进行了拟合。拟合 得到的光学势参数见表1。拟合结果见图4所示。由图

图 4 ⁷Li+¹¹B弹性散射角分布 实验数据取自文献[22-23], *E*_{lab}(⁷Li)=34 MeV; 实线为本 次实验抽取的光学势参数的计算结果。

表1 /	Li+11B弹性散射的最佳拟合光学势参数
------	----------------------

$E_{\rm lab}$ / MeV	$E_{\rm c.m.}$ / MeV	V/MeV	r_{0V} / fm	a_V / fm	W/MeV	r_{0W} / fm	a_W / fm	χ^2/pt
9.85	6.02	194.80	1.00	0.51	10.97	1.21	0.92	4.884
13.3	8.13	177.23	0.93	0.51	8.56	1.21	0.95	9.581
18.3	11.18	166.58	0.96	0.51	12.24	1.26	0.84	3.621
23.3	14.24	135.21	0.89	0.56	11.32	1.11	0.92	13.64
28.3	17.29	103.99	0.93	0.51	11.67	1.28	0.73	7.828
34	20.78	74.96	1.07	0.51	8.21	1.21	0.90	16.32
平均值		-	0.93	0.51	-	1.21	0.90	-

可见, 在θ_{c.m.} < 60°的前角区域,计算结果与文 献[22-23]的弹散数据符合得很好;但是对于θ_{c.m.} ≥ 90°的背角区域,计算结果振荡明显,而实验数据则 平滑上升。这表明四极矩、集团效应和多步过程等 对弹散在背角区域有较大影响。如果采用耦合反应 道(CRC)方法,并考虑⁷Li+¹¹B体系的弹散、非弹、 ⁷Li和¹¹B基态的自耦合,以及重要的一步和两步转移 过程,则该体系的弹散角分布可在整个角度范围内得 到较好的描述^[25]。

在拟合过程中,固定了光学势的几何参数,即光 异。 学势实部和虚部作用势形状在整个拟合过程中保持不 性情 http://www.npr.ac.cn

变。因此,可以用中心势深度来讨论作用势的能量相 依性。图5显示了实部(a)及虚部(b)势深度随能量的 变化。图中误差由χ²分析得到。结果表明,实部与虚 部的势深度与能量存在简单的线性关系,如下所示:

$$\begin{cases} V(0) = 248.80 \pm 4.85 - (8.36 \pm 0.25)E_{\rm c.m.} \text{ MeV ,} \\ \\ W(0) = 10.35 \pm 0.71 \text{ MeV }. \end{cases}$$

(5)

本文的结果与Rudchik 等^[25]的研究结果存在差 异。他们利用CRC方法研究了⁷Li+¹¹B的弹性及非弹 性散射,抽取了该体系的光学势参数,并表明势参数 存在指数形式的能量相依性。如上文所述,CRC方法 可以在整个角度范围,尤其在非纯势散射的背角区 域,可以对弹性散射角分布进行准确描述。但是,如 果仅考虑前角数据,则可以忽略各种耦合反应道效应 的影响^[26]。一般来说,由于核结构及耦合道效应的影 响,轻体系的光学势参数会出现振荡现象。在本次工 作中,抽取了⁷Li+¹¹B体系的光学势参数,在固定光 学势几何参数的前提下,建立了实部和虚部势深度与 入射能量的线性关系。这种简单的线性关系是否适用 于更广泛的能区还需要进一步的研究。

图 5 ⁷Li+¹¹B 的实部(a) 与虚部(b) 势深度的能量相依性

4 结论

在本工作中,测量了⁷Li入射能量为 E_{lab} (⁷Li) = 9.85,13.3,18.3,23.3和28.3 MeV, $\theta_{c.m.} \approx 15^{\circ} \sim$ 80°范围内的⁷Li+¹¹B的弹性散射角分布。通 过PTOLEMY程序对实验测得的弹散角分布以及取 自文献[22-23]的数据进行拟合,抽取了该体系的能 量相依的光学势:实部深度随入射能量的增加而线性 减小,虚部深度则保持在平均值10.35 MeV 左右。对 于该体系在更大能量范围内的光学势的系统学还有待 于进一步研究。

参考文献(References):

- AGUILERA E F, KOLATA J J, BECCHETTI F D, *et al.* Phys Rev C, 2001, **63**: 061603(R).
- [2] LAPOUX V, ALAMANOS N, AUGER F, et al. Phys Rev C, 2002, 66: 034608.
- [3] BENJAMIN E A, LÉPINE-SZILY A, MENDES J D R, et al. Phys Letter B, 2007, 647: 30.
- [4] KUCUK Y, BOZTOSUN I, TOPEL T. Phys Rev C, 2009, 80: 054602.
- [5] LIN C J, YANG F, ZHOU P, et al. AIP Conf Proc, 2006, 853: 81.
- [6] AN G P, LIN C J, ZHANG H Q, et al. Chin Phys Lett, 2008, 25: 4237.
- [7] WU Z D, LIN C J, ZHANG H Q, et al. Chin Phys Lett, 2009, 26: 022503.
- [8] KYRYANCHUK V M, RUDCHIK A T, BUDZANOWSKI A, et al. Nucl Phys A, 2003, 726: 231.
- [9] RUDCHIK A T, STEPANENKO Y M, KEMPER K W, et al. Nucl Phys A, 2009, 831: 139.
- [10] COOK J. Nucl Phys A, 1982, 388: 153.
- [11] COOK J. Atomic Data and Nucl Data Tables, 1981, 26: 19.
- [12] FESHBACH H. Ann Phys (N.Y.), 1958, **5**: 357.
- [13] SAKURAGI Y. Phys Rev C, 1987, 35: 2161.
- [14] BRANDAN M E, SATCHLER G R. Phys Rep, 1997, 285: 143.
- [15] FARID M E, HASSANAIN M A. Nucl Phys A, 2002, 697: 183.
- [16] FARID M E. Phys Rev C, 2002, 65: 067303.
- [17] BUCK B, DOVER C B, VARY J P. Phys Rev C, 1975, 11: 1803.
- [18] GOTO Y, HORIUCHI H. Prog Theor Phys, 1979, 62: 662.
- [19] FARID M E. J Phys G, 1990, **16**: 461.
- [20] FARID M E, MAHMOUD Z M M, HASSAN G S. Phys Rev C, 2001, 64: 014310.
- [21] FARID M E, MAHMOUD Z M M, HASSAN G S. Nucl Phys A, 2001, 691: 671.
- [22] COOK J, STEPHENS M N, KEMPER K W. Nucl Phys A, 1987, 466: 168.
- [23] COOK J, ABDALLAH A K, STEPHENS M N, et al. Phys Rev C, 1987, 35: 126.
- [24] BROWN M R, MACFARLANE M H, PIEPER S C. Phys Rev C, 1980, 21: 2417.
- [25] RUDCHIK A A, RUDCHIK A T, KOZERATSKA G M, *et al.* Phys Rev C, 2005, **72**: 034608.
- [26] VINEYARD M F, COOK J, KEMPER K W, et al. Phys Rev C, 1984, 30: 916.

Study of ⁷Li+¹¹B Phenomenological Optical Model Potentials

YANG Lei¹⁾, LIN Chengjian, YANG Feng, JIA Huiming, XU Xinxing, ZHANG Huanqiao, LIU Zuhua, ZHANG Shitao, BAO Pengfei, SUN Lijie

(China Institute of Atomic Energy, Beijing 102413, China)

Abstract: Angular distributions of ⁷Li+¹¹B elastic scattering were measured at $E_{\text{lab}}(^{7}\text{Li})=9.85$, 13.3, 18.3, 23.3 and 28.3 MeV within the angular range of $\theta_{\text{c.m.}} \approx 15^{\circ} \sim 80^{\circ}$. The analyse of these angular distributions together with the data taken from literatures at $E_{\text{lab}}(^{7}\text{Li}) = 34$ MeV have been performed to extract the parameters of optical model potential. With the fixed geometrical shapes, the potential strengths show a concise relation to the reaction energy: the depths of real potential decrease linearly with energy increasing, whereas the depths of imaginary part just slightly vary around the average value of 10.35 MeV.

Key words: weakly-bound nuclear reaction; odd-*A* light nuclear reaction; elastic scattering angle distribution; optical model potential; energy dependence

<sup>Received date: 11 Dec. 2012; Revised date: 6 Jan. 2013
Foundation item: National Natural Science Foundation of China(10727505, 10975192)
1) E-mail: yang_lei@ciae.ac.cn</sup>