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Abstract：The nuclear shape phase transitional patterns were studied in the SD-pair shell model. The

results show that the transitional patterns similar to the U(5)−SU(3) and U(5)−SO(6) transitions in the

interacting boson model can be produced. The signatures of the critical point symmetry in the interacting

boson model are also produced approximately. It is also found that the shape phase transitional pattern

between vibration and rotation can also be produced by changing the interactional strength.
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1 Introduction

In the last ten years, a number of theoreti-

cal developments have provided new insights on un-

derstanding the evolution of nuclear structure in

transitional regions through the shape phase transi-

tion(SPT) analysis
[1–3]

.

Nuclei, as a mesoscopic system, have been found

to possess interesting geometric shapes. Theoretical

study of shape phase transitions and critical point sym-

metries in nuclei has mainly been carried out
[2–21]

in

the interacting boson model(IBM)
[2]
. The IBM is a

phenomenological model of nuclear structure which

has a deep connection with the microscopic shell

model
[22, 23]

. Recently there have been studies on nu-

clear shape phase transitions and their critical point

symmetries in the framework of shell model
[24–30]

, den-

sity functional approach
[31]

and relativistic mean field

approach
[32]

.

The investigations on nuclear shape phase transi-

tion and critical point symmetry for identical nucleon

system have also been carried out with fermionic de-

grees of freedom in
[16, 33–37]

.

Nucleon-pair shell model(NPSM) was proposed in

1993 for even nuclei
[38]

, the advantages of the NPSM

are that it accommodates various truncation, ranging

from the truncation to only the S subspace, the S-

D subspace, up to the full shell model space, and

that it is flexible enough to include the broken pair

approximation
[39]

, the pseudo SU(2) or the favored

pair model
[40]

and the fermion dynamical symmetry

model
[41]

as its special cases.

The tremendous success of IBM
[2]
, suggests that S

andD pairs play a dominant role in the spectroscopy of

low-lying modes
[42–44]

. Therefore, one normally trun-

cates the full shell-model space to the collective SD-

pair subspace in the NPSM. The latter is called the

SD-pair shell model(SDPSM)
[38, 45, 46]

.

Since the model space is also built up from SD

pairs, it is interesting to see if the nuclear shape phase

transitional patterns produced from IBM can be pro-

duced in the SDPSM. This is the main objective of

this paper.

2 Model

In this section we will give a brief description of

the SDPSM, while the details of the model can be

found in
[38, 45]

.

A schematic Hamiltonian can be adopted in

the SDPSM, which is a combination of the single-

particle term, monopole pairing, quadrupole-pairing

and quadrupole-quadrupole interaction with

H =
∑

σ=π,ν

Hσ−κπνQ
2
π ·Q2

ν , (1)
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where

Hσ =
∑
α

ϵσαnσα−
∑

j=0, 2

GσjS
†
σjSσj−κσQ2

σ ·Q2
σ ,

S† =
∑
a

ĵa
2

(
C†

a×C†
a

)
,

Q(2)
µ =

√
16π

5

n∑
i=1

r2i Y2µ(θiϕi) . (2)

The parameters of Gσj and κσ are the interac-

tion strength for monopole pairing term,quadrupole-

pairing term and quadrupole-quadrupole interaction

strength between like-nucleon, and κπν is the interac-

tional strength of quadrupole-quadrupole between pro-

tons and valence neutrons.

The E2 transition operator is

E2= eπQ
2
π+eνQ

2
ν , (3)

where eπ and eν are effective charge of the neutron

and protons.

The “realistic” collective pair of angular momen-

tum S with projection ν, denoted as Ar†
ν , is built from

many non–collective pairs in the single–particle orbits

c and d,

Ar†
ν =

∑
cd

y(cdr)(C†
c ×C†

d)
r
ν , r=0, 2, (4)

where y(abr) are structure coefficients. In this paper,

as an approximation, the S-pair structure coefficients

are determined as y(aa0)=
√
2ja+1 va

ua
, where va and

ua are the occupied and unoccupied amplitudes for or-

bit a obtained by solving the associated BCS equation.

The D pair is obtained by using the commutator
[47]

,

D† =
1

2

[
Q2,S†

]
=
∑
ab

y(ab2)
(
C†

a×C†
b

)2
. (5)

The matrix elements of the Hamiltonian in the

multi–pair basis can be expressed in terms of the over-

lap of the multi–pair states, and the latter can be cal-

culated recursively by
[38]

.

⟨s1s2 . . .sN ;J ′
1 . . .J

′
N−1JN |r1r2 . . . rN ;J1 . . .JN ⟩=

(Ĵ ′
N−1/ĴN )(−)JN+sN−J′

N−1

1∑
k=N

∑
Lk−1...LN−1

HN (sN ) . . .Hk+1(sN )×[
ψkδLk−1,Jk−1

⟨s1 . . . sN−1;J
′
1 . . .J

′
N−1

∣∣r1 . . . rk−1, rk+1 . . . rN ;J1 . . .Jk−1Lk . . .LN−1⟩+
1∑

i=k−1

∑
r′
iLi...Lk−2

⟨s1 . . . sN−1;J
′
1 . . .J

′
N−1

∣∣r1 . . . r′i . . . rk−1, rk+1 . . . rN ;J1 . . .Ji−1Li . . .LN−1⟩
]
, (6)

where Ĵ =
√
2J+1, Hk(sN ) are essentially Racah co-

efficients, induced by various re-coupling procedures,

ψk is a constant coming from the annihilation of the

pair Ark† by AsN , and thus depends on the structure

of these two pairs, while r′i represents a new collec-

tive pair Br′
i† resulting from a double–process, first the

pair AsN transforms the pair Ark† into a particle–hole

pair Pt with angular momentum t, which then prop-

agates forward, crosses over the pairs rk−1, · · · , ri+1,

and finally transforms the pair Ari† into the new pair

Br
′
i† =

[
Ari†,Pt

]r′
i , with a new distribution function

y′(akair
′
i) depending on the structure of all the three

pairs Ark†, Ari† and AsN†, and the intermediate quan-

tum numbers Li . . .Lk−2Lk−1.

The right side of Eq. (6) is a linear combination

of the overlap for N -1 pairs, therefore the overlap can

be calculated recursively.

3 Nuclear shape phase transitional
patterns as in the IBM

To see if the similar shape phase transitional pat-

terns obtained from the IBM can be reproduced in the

SDPSM, the nuclear shape phase transitional patterns

for both identical nuclear system and neutron-proton

coupled system were studied in the SDPSM. It was

found that the results we got from the SDPSM are sim-

ilar to those from IBM. As an example, the vibration-

rotation shape phase transitional patterns for neutron-

proton coupled system are presented here.

A schematic Hamiltonian is adopted in the

SDPSM, which is a combination of the monopole pair-

ing and quadrupole-quadrupole interaction with

HX =
∑

σ=π,ν

(−GσS
†
σSσ−κσQ(2)

σ ·Q(2)
σ )−

κπνQ
(2)
π ·Q(2)

ν , (7)

where X in HX is denoted as U(5), SU(3) correspond-

ing to vibrational, rotational limiting case in the model,

Gσ and κσ are the pairing and quadrupole-quadrupole

interaction strength between identical-nucleons, re-

spectively. κπν is the quadrupole-quadrupole interac-

tion strength between proton and neutrons. In this

paper, we set Gπ =Gν and κπ =κν .
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To study the phase transitional patterns, the

Hamiltonian is written as

H =(1−α)HU(5)+αHX , (8)

where 06α6 1 is a control parameter, HX is taken as

HSU(3) when we study vibration-rotation transitional

patterns.

To identify shape phase transitions and deter-

mine the corresponding patterns, a set of effective

order parameters were proposed, for example, v2 =

(< 0+2 |n̂d|0+2 > − < 0+1 |n̂d|0+1 >)/N and v′2 = (<

2+1 |n̂d|2+1 > − < 0+1 |n̂d|0+1 >)/N
[12]

,K1 = B(E2;4+1 →
2+1 )/B(E2;2+1 → 0+1 ) and K2 = B(E2;0+2 →
2+1 )/B(E2;2+1 → 0+1 )

[19]
,R60 = E6+

1
/E0+

2
and R42 =

E4+
1
/E2+

1
.

A system with Nπ =Nν =3 in gds shell was stud-

ied. By fitting R42 ≡E4+
1
/E2+

1
=2 for vibrational case,

E4+
1
/E2+

1
= 3.33 for rotational case, the parameters

used to produce the vibrational spectra and rotational

spectra were obtained, and presented in Table 1. The

detailed discussion about the vibrational spectra and

rotational spectra can be found in Refs. [49, 50].

Table 1 The parameters used to produce the vibra-
tional, rotational spectra. Gσ is in unit of MeV,
κσ and κπν are in unit of MeV/r40.

Limit Gπ Gν κπ κν κπν

Vibration 0.5 0.5 0 0 0.01

Rotation 0 0 0.1 0.1 0.2

Energy ratios R42 and R60 against control param-

eter α are shown in Fig. 1. Fig. 1(a) shows that the en-

ergy ratio R42 is 2 (when α=0) and 3.3 (when α=1),

which are typical values of vibrational and rotational

spectra, respectively, in the IBM
[2]
. It is also shown

that the rapid change occurs when 0.36α6 0.6, which

indicates that the phase transition occurs within this

region.

Fig. 1 Energy ratios R42 and R60 vs α for the
vibration-rotation transition.

The energy ratio R60 given in Fig. 1(b) shows that

similar behavior to that of the IBM for finite number

of boson NB is reproduced. It exhibits a modest peak

followed by a sharp decrease across the phase tran-

sition, a typical signature of the 1st-order quantum

phase transition
[52]

.

The SDPSM results of v2, v
′
2, K1 and K2 are

given in Fig. 2 and Fig. 3. The system we studied

here is A=130. The effective charges were fixed with

eπ = 3eν = 1.5e. As argued in Ref. [12], v2, v
′
2 should

have wiggling behaviors in the region of the critical

point due to the switching of the two coexisting phases

for the first order phase transition. Indeed, the obvi-

ous wiggling behaviors shown by v2, v
′
2 in Fig. 2 further

confirm that the transition is first order. The results

of B(E2) ratio K1 is also consistent with those of other

effective quantities
[12, 19]

. The critical behavior of K2

seems to deviate from the character of the first order

phase transition.

Fig. 2 v2 and v′2 vs α in the vibration-rotation transition.

Fig. 3 B(E2) ratios vs α in the vibration-rotation

transition.

In the IBM, the critical point symmetry
[8]

be-

tween U(5) and SU(3) is X(5). Since the shape phase

transition between vibrational and rotational limit can

be reproduced in the SDPSM, it is interesting to see if

the properties of the X(5)-like symmetry also occurs

within the SDPSM. We found that there is indeed a

signature with α=0.54 in the SDPSM similar to that

of the X(5) in the IBM. A few typical values are given

in Table 2, from which one can see that typical fea-

ture of the X(5) symmetry stated in Ref. [51, 52] in-

deed occurs in the SDPSM. For example, R42, R60

and E0+
2
/E2+

1
is 2.91, 1.05 and 5.32 in the SDPSM cal-

culation, close to the IBM results 2.91, 1.0 and 5.67,

respectively.
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Table 2 Energy and B(E2) ratios at vibrational, rotational limit, and X(5)-like critical point calculated in the SDPSM.

Limit

E
4+1

E
2+1

E
6+1

E
2+1

E
6+1

E
0+2

4+1 → 2+1
2+1 → 0+1

6+1 → 4+1
2+1 → 0+1

Vibrational limit 1.99 2.97 1.47 1.49 1.48

X(5)-like point 2.91 5.60 1.05 1.38 1.38

Rotational limit 3.33 6.96 0.46 1.34 1.32

E
0+2

E
2+1

E2+ −E
0+2

E
2+1

E4+ −E
0+2

E
2+1

2+ → 0+2
2+1 → 0+1

4+ → 2+

2+1 → 0+1

X(5)-like point (0+2
band)

5.32 2.30 5.33 0.37 0.43

4 Effects of interactional strengths on
nuclear shape phase transition

In Ref. [53], a correspondence between the

strength of each of the interactions and the nu-

clear shape phases is obtained with the Dyson boson

mapping approach(DBMA), in which a shell model

Hamiltonian with monopole-pair, quadrupole-pair and

quadrupole-quadrupole interactions between nucleons

were used. The results show that increasing the

quadrupole-pair interaction strength can induce the vi-

brational to the axially prolate rotational shape phase

transition and enhancing the quadrupole-quadrupole

interaction can drive the phase transition from the

axially oblate rotational to the axially prolate rota-

tional, with the γ-soft rotational being the critical

point. Ref. [53] also mentioned that the approxima-

tion of bosonization of nucleon pair was applied in

their Dyson Boson mapping approach, and whether

some results are specifically related to the approxima-

tion still needs to be checked. It is interesting to see if

the similar conclusion as in Ref. [53] can be obtained

in the SDPSM.

The effects of the interactional strength on the nu-

clear shape phase transitional patterns for both iden-

tical nuclear system and neutron-proton coupled sys-

tem were studied in the SDPSM. It was found that

the results we got from the SDPSM are similar to

those from DBMA. As an example, the effects of the

quadrupole-quadrupole interactional strength on the

vibration-rotation transitional pattern for the identi-

cal nucleon system are discussed here.

As in Ref. [53], we take a general shell model

Hamiltonian to study the dependence of the shape

phases on each of the interactions, which is a combi-

nation of the single particle energy, monopole pairing,

quadrupole-pairing and quadrupole-quadrupole inter-

action with

H =H0−G0S†S−G2P†P−κQ(2) ·Q(2) , (9)

H0 =
∑
a

ϵana ;

S† =
∑
a

ĵa
2

(
C†

a×C†
a

)
,

P† =
∑
ab

q(ab2)
(
C†

a×C†
b

)2
;

Q(2)
µ =

√
16π

5

n∑
i=1

r2i Y2µ(θiϕi) ,

where a denote all quantum number necessary to

specify a state [a ≡ (nlj)]. εa and na are the

single-particle energy and number operator of state

a, ĵa =
√
2ja+1 respectively. G0, G2 and κ is the

monopole-pairing, quadrupole-pairing and quadrupole-

quadrupole interaction strength, respectively.

The E2 transition operator is simply

T (E2)= eeffQ
(2) , (10)

where eeff is the effective charge, which is set to be

1.0e.

To see if the SDPSM can produce the similar re-

sults as in Ref. [53], the same major shell and single

particle energy levels as in Ref. [53] are used for the

system with A= 130, which is 1.3, 2.8, 0, 0.8 and 2.5

for j = 1/2, 3/2, 5/2, 2/7 and 11/2, respectively. We

set G0 = 0.2 MeV, G2 = 0 and 0 6 κ 6 0.1 MeV/r40,

as in DBMA. Since G0 = 0.2 MeV and G2 = 0 cor-

responds to the spherical phase, our calculation here

shows in fact the effect of the quadrupole-quadrupole

interaction on the spherical phase. The calculated re-

sults of energies, and B(E2) values against κ are given

in Fig. 4 and Fig. 5, respectively.

From Fig. 4(a) and Fig. 4(b) one can see that

the degenerate level structure of the vibrational states

(U(5) symmetric states in the IBM), such as 0+2 , 2
+
2

and 4+1 states, can be produced very well before κ 6
0.01 MeV/r40, while the level structure of the rotational

states (SU(3) symmetric states in the IBM) can be re-
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Fig. 4 Calculated result of the dependence of the low-lying levels energies on the quadrupole-quadrupole interaction

κ when G0 =0.2 MeV and G2 =0. Energy ratios are defined as RJi =EJi/E21 , R60 =E61/E02 .

Fig. 5 Calculated result of the dependence of the B(E2) and B(E2) ratios on the quadrupole-quadrupole κ when

G0 =0.2 MeV and G2 =0. B(E2) ratios are defined as BIiJj =B(E2;Ii → Jj)/B(E2;21 → 01).

produced for larger κ values. The two special energy

ratios, R41 and R60 which can also be used to iden-

tify the nuclear shape phase transition, are presented

in Fig. 4(c) and Fig. 4(d), from which one can see

that although R41 is smaller than 2.0 when κ=0 and

smaller than 3.3 when κ = 0.05 MeV/r40, the general

behavior of the nuclear shape phase transition from

vibrational limit to rotational limit can be produced.
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For example, Fig. 4(d) shows that the wiggling behav-

ior of R60 is produced, a typical feature of nuclear

shape phase transition between vibrational and rota-

tional limit. The reason why R41s are all smaller than

the typical value of the vibrational limit 2.0 and ro-

tational limit 3.3 is because the pauli-blocking effect,

which plays an important role in producing the collec-

tivity of the low-lying states. If neutron-proton cou-

pled system is considered, the results are all close to

the typical values of the limiting cases in the IBM.

The B(E2) and relative B(E2) ratios are given in

Fig. 5. From Fig. 5(a) and Fig. 5(b) it is seen that

the results of the vibrational limit can be produced

when κ = 0, and then they all change quickly with κ

till κ = 0.015 MeV/r40, after this point, they all be-

come saturate slowly and close to the rotational case,

i.e., B(E2;2+1 → 0+1 ) and B(E2;4+1 → 2+1 ) are strong,

while B(E2;2+2 → 2+1 ) and B(E2;0+2 → 2+1 ) are small.

B4121 and B0221 are also used to identify the order of

the nuclear shape phase transition
[19]

. From Fig. 5(c)

one can see that the wiggling behavior of B4121 can be

produced, the typical feature of the phase transitional

pattern between U(5) and SU(3). But as discussed in

Ref. [28], the behavior of B0221 shown in Fig. 5(d) can

not give any signature of the order of the shape phase

transition.

5 A brief summary

In summary, the effect of the interactional

strength on the nuclear shape phase transition pat-

terns have been studied within the framework of the

SD-pair shell model for identical system. The results

show that by changing the monopole pairing interac-

tional strength, the nuclear phase from single-particle

motion to collective motion can be produced. It is

also shown that the shape phase transitional patterns

as in the IBM case can also be produced in the SDPSM

by changing the interactional strengths. This results

also show that the results obtained in Ref. [53] about

the validity of the boson mapping is reasonable if the

general behavior of the vibration-rotation shape phase

transitional patterns are considered.
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SD对壳模型下原子核形状相变
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摘要: 在SD对壳模型的理论框架下讨论了原子核形状相变模式。研究结果表明，该理论模型可以把相互作用玻色

子模型中U(5)−SU(3)以及U(5)−SO(6) 形状相变模式再现出来，相互作用玻色子模型中有关临界点对称性的特征

也可以很好地描述。本文同时也发现原子核从振动到转动的形状相变可以通过改变相互作用强度来实现。
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