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Abstract：A recently developed method for calculating spectroscopic properties of medium-mass and heavy

atomic nuclei with an odd number of nucleons is reviewed, that is based on the framework of nuclear energy

density functional theory and the particle-core coupling scheme. The deformation energy surface of the even-

even core, as well as the spherical single-particle energies and occupation probabilities of the odd particle(s),

are obtained by a self-consistent mean-field calculation with the choice of the energy density functional and

pairing properties. These quantities are then used as a microscopic input to build the interacting boson-

fermion Hamiltonian. Only three strength parameters for the particle-core coupling are specifically adjusted

to selected data for the low-lying states of a particular odd-mass nucleus. The method is illustrated in a

systematic study of low-energy excitation spectra and electromagnetic transition rates of axially-deformed

odd-mass Eu isotopes. Recent applications of the method, to the calculations of the signatures of shapes

phase transitions in axially-deformed odd-mass nuclei, octupole correlations in neutron-rich odd-mass Ba

isotopes, are discussed.
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1 Introduction of BRIF

The interplay between single-particle and col-

lective degrees of freedom plays a crucial role in

atomic nuclei
[1]
. At low energy, in even-even nu-

clei, nucleons are coupled pairwise and this is mani-

fest in low-lying rotational and vibrational collective

excitations
[1]
. Many nuclear models have successfully

been applied in studies of the structure of even-even

nuclei
[1–5]

. The situation is, however, more compli-

cated in nuclei with odd Z and/or N , because one has

to consider unpaired fermions explicitly and treat the

single-particle and collective degrees of freedom on the

same level
[1, 6]

. Although most nuclear species have an

odd Z or/and N , microscopic studies of their structure

have not been pursued as extensively as in the case of

even-even systems, especially for medium-heavy and

heavy nuclei.

The energy density functional (EDF)
[4, 7]

method

allows for a global description of low-energy proper-

ties of nuclei all over the chart of nuclides. Although

not as common as in the even-even case, a number of

calculations have been made within the EDF frame-

work at the mean-field level for odd-mass systems. In

the EDF framework, a proper description of excited

states requires the inclusion of dynamical correlations

associated with the restoration of broken symmetries

and fluctuations via the symmetry-projected configura-

tion mixing calculation. A significant extension of this

type of calculation to odd-mass systems was made
[8]
,

by explicitly taking into account the breaking of time-

reversal symmetry. Nevertheless, the practical appli-

cations of this approach to medium-heavy and heavy

nuclei are computationally demanding, and so far have

been limited to very light-mass systems
[8–9]

.

Recently we have developed a novel theoretical

method
[10]

for odd-mass nuclei, that is based on nu-

clear density functional theory and the particle-core

coupling scheme. In this approach the even-even core

is described in the framework of the interacting bo-

son model (IBM)
[3]
, and the particle-core coupling

is modelled by the interacting boson-fermion model

(IBFM)
[11]

. The deformation energy surface of an

even-even nucleus as a function of the quadrupole

shape variables (β,γ), as well as the single-particle en-

ergies and occupation probabilities of the odd nucleon,

are obtained in a self-consistent mean-field calculation

with a given EDF, and they determine the microscopic
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input for the parameters of the IBFM Hamiltonian.

Only the strength parameters of the boson-fermion

coupling terms in the IBFM Hamiltonian have to be

adjusted to the data for the low-lying states in the

considered odd-mass nucleus.

So far, the method has been applied to study

(i) the spherical-to-axially-deformed
[12–13]

and (ii)

spherical-to-γ-soft
[14–15]

shape phase transitions in

odd-mass nuclei, (iii) the octupole correlations in

neutron-rich Ba isotopes
[16]

, (iv) the structure of

neutron-rich Kr isotopes
[17]

, and (v) the prolate-to-

oblate shape transitions in the mass A≈ 190 region
[18]

,

and to address (vi) the robustness of the method by

using both non-relativistic
[13, 15]

and relativistic
[12, 14]

EDFs. In this contribution, we focus on the top-

ics (i) and (iii). The results reported here are based

on the collaborations with D. Vretenar, T. Nikšić, R.

Rodŕıguez-Guzmán, and L. M. Robledo.

In Sec. 2 the procedure to construct the IBFM

Hamiltonian from the SCMF calculation is outlined.

Sec. 3 presents results for spectroscopic calculations of

the odd-mass Eu isotopes as a proof of the method.

Sec. 4 highlights recent applications mentioned above,

followed by a short summary and concluding remarks

in Sec. 5.

2 Theoretical framework

The IBFM Hamiltonian for an odd-mass nucleus

contains the even-even (boson) core Hamiltonian ĤB,

a single-particle Hamiltonian that describes the un-

paired nucleon ĤF, and a term that describes the in-

teraction between bosons and fermions ĤBF:

ĤIBFM = ĤB+ĤF+ĤBF. (1)

For low-energy states, the dominant components in the

boson space are the s (spin 0+) and d (spin 2+) bosons,

which correspond to the correlated pairs of J = 0+

and 2+ pairs of valence nucleons, respectively
[19]

. The

number of bosons equals the number of valence (spher-

ical open-shell) proton and neutron pairs (particle or

hole pairs). For the boson Hamiltonian ĤB we employ

the standard form
[3]
: ĤB = ϵdn̂d+κQ̂·Q̂+κ′L̂·L̂, with

the d-boson number operator n̂d = d†·d̃, the quadrupole
operator Q̂ = s†d̃+ d†s̃+ χ[d† × d̃](2), and the angu-

lar momentum operator L̂ =
√
10[d†× d̃](1). ϵd, κ, κ

′

and χ are parameters that are to be determined by

the SCMF calculation. The fermion Hamiltonian for

a single nucleon reads ĤF =
∑

j ϵj [a
†
j × ãj ]

(0), with

ϵj the single-particle energy of the spherical orbital j.

For the particle-core coupling ĤBF we use the simplest

form
[11]

:

ĤBF=
∑
jj′

Γjj′Q̂ · [a†j× ãj′ ]
(2)+

∑
jj′j′′

Λj′′

jj′ : [[d
†× ãj ]

(j′′)× [a†j′ × d̃](j
′′)](0) : +

∑
j

Aj [a
†
j× ãj ]

(0)n̂d, (2)

where the first, second, and third terms are referred

to as the quadrupole, exchange, and monopole inter-

actions, respectively. The physical meaning of each

term is discussed in Ref. [10]. For the strength param-

eters Γjj′ , Λj′′

jj′ , and Aj the following expressions
[21]

are employed:

Γjj′ =Γ0γjj′ , (3)

Λj′′

jj′ =−2Λ0

√
5

2j′′+1
βjj′′βj′j′′ , (4)

Aj =−
√
2j+1A0, (5)

where γjj′ = (ujuj′ − vjvj′)Qjj′ and βjj′ = (ujvj′ +

vjuj′)Qjj′ , and the matrix element of the quadrupole

operator in the single-particle basis Qjj′ = ⟨j||Y (2)||j′⟩.
The factors uj and vj denote the occupation probabil-

ities of the orbit j.

As an illustrative application of the method, we

consider the case of a single nucleon coupled to an

axially-deformed nuclei, i.e., the low-energy spectra

of the isotopes 147−155Eu. These nuclei were exten-

sively investigated in the earlier IBFM calculation
[20]

and, therefore, one can directly compare the present

results with those obtained in a purely phenomeno-

logical approach. The corresponding even-even core

nuclei 148−154Sm present excellent examples of the

shape transition from the nearly-spherical and axially-

deformed shapes
[3]
.

The first step is to determine the parameters for

the even-even core Hamiltonian ĤB. To this aim we

employ the procedure developed in Ref. [22]: the con-

strained self-consistent mean-field (SCMF) calculation

based on a given EDF determines the microscopic

deformation energy surface as function of the polar

deformation parameters β and γ
[1]
; This energy sur-

face is mapped onto the corresponding expectation

value of the boson Hamiltonian in the intrinsic (co-

herent) state
[23]

of the interacting-boson system, and

this mapping completely determines the parameters of

ĤB. Only the strength parameter κ′ for the L̂·L̂ term

is determined separately so that the cranking moment

of inertia in the IBM intrinsic state becomes equal to

the one obtained from the self-consistent cranking cal-

culation at the mean-field minimum
[24]

.

For the fermion valence space we include all the

spherical single-particle orbits in the proton major
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shell Z = 50 ∼ 82: 1g7/2, 2d5/2, 2d3/2 and 3s1/2 for

positive-parity, and 1h11/2 for negative-parity, with

single-particle energies and occupation probabilities

determined by the SCMF calculation constrained at

zero deformation. The three strength parameters of

ĤBF (Γ0, Λ0 and A0) are the only parameters that are

fitted to data, separately for positive- and negative-

parity states for each nucleus.

Having determined all the parameters, the Hamil-

tonian ĤIBFM is numerically diagonalised to yield ex-

citation spectra and electromagnetic transition rates

of a given odd-mass nucleus.

3 Odd-mass Eu isotopes

In Fig. 1 we display triaxial quadrupole binding

energy maps of the even-even 148−154Sm nuclei in the

β − γ plane (0 6 γ 6 60◦), obtained from the con-

strained self-consistent relativistic Hartree-Bogoliubov

(RHB) calculation
[7]

based on the DD-PC1 EDF
[25]

and a separable pairing force of finite range
[26]

. The

energy surfaces clearly exhibit a gradual increase of

deformation of the prolate minimum with increasing

neutron number, from nearly spherical 148Sm to well-

deformed prolate shapes at 154Sm, and the evolution

of the γ-dependence of the potentials. The shape evo-

lution corresponds to the transition from the U(5) to

the SU(3) limits of the IBM
[3]
. The energy surfaces

of 150,152Sm indicate that these are transitional nuclei,

characterised by a softer potential around the equilib-

rium minimum both in the β and γ directions, typical

of the quantum shape phase transition
[28]

.

In Fig. 2 we show the calculated excitation ener-

gies for the low-lying positive- (π=+1) and negative-

parity (π = −1) yrast states in 147−155Eu isotopes as

functions of neutron number, in comparison with avail-

able experimental data
[27]

. The present calculation re-

produces the experimental systematics reasonably well.

The structural evolution is characterized by the

Fig. 1 (color online) Self-consistent RHB triaxial quadrupole binding energy maps of the even-even 148−154Sm isotopes
in the β−γ plane (06 γ6 60◦). The energy difference between the neighbouring contours is 250 keV.

Fig. 2 (color online) Evolution of excitation energies of low-lying (a,b) positive- (π = +1) and (c,d) negative-parity
(π=−1) yrast states as functions of neutron number in the 147−155Eu isotopes.
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change in the spin of the ground state at a particular

nucleus
[29]

. Indeed one sees from the figure that the

ground-state spin changes at N = 90 in odd-mass Eu

isotopes for negative parity. For the positive-parity

states, the change does not occur, but still the 5/2+

level becomes minimal in energy at N =88.

The model can also describe details of excitation

spectra and decay patterns in individual nuclei. Fig-

ure 3 displays the low-energy level scheme of the nu-

cleus 153Eu. The theoretical results are in a very good

agreement with experiment. The present results repro-

duce data on the same level of accuracy as the fully

phenomenological approach
[20]

. From Fig. 3 the two

positive-parity bands built on the states Jπ = 5/2+

and 3/2+ are assigned to the Kπ = 5/2+ and Kπ =

3/2+ rotational bands, respectively. The level energies

of these J(J +1) rotational bands exhibit the strong-

coupling ∆J = 1 systematics. The positive-parity

bands based on 5/2+1 and 3/2+1 predominantly corre-

spond to the 1g7/2 and 2d5/2 proton configurations,

respectively, with significant mixing of the two

Fig. 3 (color online) Low-energy level scheme the
isotope 153Eu. Numbers along arrows are B(E2)
(thick, in color blue) and B(M1) (slanted, in color
green) values in W.u., respectively. Experimental
data are from Ref. [27].

configurations. The model also reasonably describes

the electromagnetic transition rates.

4 Applications

4.1 Signatures of shape phase transitions

We have already seen in Fig. 2 several signatures

of the shape phase transitions in odd-mass Eu nuclei,

e.g., change of the ground-state spin. Nuclear shape

phase transition is characterised by a discrete change

of order parameters as functions of the control param-

eter (nucleon number). To show such a phase transi-

tional behaviour of observables in a more vivid manner,

we consider the differential of a given quantity O for

a nucleus with mass A as its absolute value averaged

over the lowest bands i, that is,

δO=
1

n

n∑
i=1

|Oi,A−Oi,(A−2)|. (6)

For O, in this contribution we consider: B(E2), an av-

erage B(E2) for transitions between the band-head of

a given band with spin J0 and the lowest n states with

spin J0+∆J with ∆J =1 and 2; the energy difference

E(J1,J0)=E(J1)−E(J0) with E(J0) and E(J1) (J1 =

J0+∆J with ∆J =1,2) being the energies of the band-

head and the first excited state in a band, respectively;

the energy ratio between the lowest two excited states

(with spin J1 = J0+∆J and J2 = J0+2∆J) in a given

band R(J2,J1,J0)= [E(J2)−E(J0)]/[E(J1)−E(J0)].

Fig. 4 displays the differentials of the above quan-

tities for the odd-mass Eu nuclei. One notices that

apart from only a few exceptions, that is, δE(J1,J0)

for the positive-parity states in odd-mass Eu, the dif-

ferentials of the considered quantities exhibit a pro-

nounced discontinuity at the transitional nuclei either

at A = 151 or 153, where the potential becomes no-

tably soft in both β and γ directions (see, Fig. 1). We

have shown
[12]

that the differentials of the character-

istic quantities in the even-even core Sm nuclei also

exhibit abrupt changes between the nuclei with mass

number A = 150 and 152, and that these do occur in

the corresponding odd-mass systems.

4.2 Octupole correlations in odd-mass nuclei

Octupole shape is a recurrent theme of interest,

as indeed a number of new experiments are either run-

ning or being planned to measure it, e.g., in the mass

A ≈ 220 and 144 (for a review, see Ref. [30]). The

octupole deformation is also relevant for odd-mass nu-

clei, which however, have not been so extensively stud-

ied theoretically as for the even-even nuclei. We have

extended the method to include octupole degrees of

freedom in odd-mass systems
[16]

, and analysed the role
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of octupole correlations in neutron-rich Ba isotopes in

the mass A≈ 144.

Fig. 4 (color online) Differentials of B(E2) with ∆J =1
(a-1, a-2) and ∆J = 2 (b-1, b-2), excitation
energy δE(J1,J0) (c-1, c-2) and the energy ratio
δR(J2,J1,J0) (d-1, d-2), for the odd-mass Eu
isotopes, as functions of the mass number A.

Fig. 5 depicts the axially-symmetric (β2,β3) de-

formation energy surface for the nucleus 144Ba, calcu-

lated with the constrained RHB method. A minimum

with non-zero β3 deformation (β ≈ 0.1) is seen. The

β2−β3 RHB energy surface has been mapped onto the

sdf -IBM Hamiltonian, which has been used to describe

both positive- and negative-parity states in the consid-

ered even-even Ba nuclei. The sdf -IBFM Hamiltonian

has been constructed in a similar way to the sd-IBFM

one, but more free parameters are involved (the proce-

dure to determine the parameters for the sdf -IBFM is

described in great detail in Ref. [16]).

Fig. 5 (color online) The β2 − β3 RHB deformation
energy surfaces for 144Ba. The energy difference
between neighbouring contours is 200 keV. Equi-
librium minimum is identified by open circle.

The excitation spectra are shown in Fig. 6. The

lowest two negative-parity bands, built on the 5/2−1
and 7/2−1 states, are characterized by the coupling of

the unpaired neutron in the 1h9/2 single-particle or-

bital to the sd boson space. The lowest positive-parity

state 9/2+1 is described by the coupling of the 1i13/2
orbital to sd-boson states. The theoretical π = +1

band built on the 7/2+1 state is constructed by the

coupling of the 1h9/2 single-neutron configuration to

states with one f -boson. The theoretical 11/2+1 level,

calculated at 705 keV, can be compared with the ex-

perimental 11/2+ state at 670 keV
[31]

, which has been

suggested as a candidate for an octupole state. Non-

negligible E3 transition strength from the 7/2+1 band

to the negative-parity ground-state band is predicted

in the present calculation.

Fig. 6 (color online) Low-lying energy spectra for the
nucleus 145Ba. The levels for the theoretically and
experimentally proposed octupole states are shown
as thick lines.

5 Conclusion

In this contribution, we have reviewed a recently

developed method for calculating spectroscopic proper-

ties of medium-mass and heavy odd-mass nuclei. Most

of the parameters of the IBFM Hamiltonian used to de-

scribe the coupled system of the unpaired particle(s)

plus boson-core, are uniquely determined based on

the microscopic nuclear EDF framework. Only the

strength parameters of the particle-boson coupling are

specifically adjusted to data for each nucleus. As an

illustrative example, the low-energy excitation spectra

and transition rates of 147−155Eu have been analyzed,

and a very good agreement with data has been ob-

tained. Other selected results from this method have

been discussed. The microscopic approach in which

the even-even core is described in terms of bosonic de-

grees of freedom, and only the fermion degrees of free-

dom of the unpaired particle(s) are treated explicitly,
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enables an accurate, computationally feasible, and sys-

tematic description of a wealth of new data on isotopes

with odd nucleon number(s).
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[12] K. NOMURA, T. NIKŠIĆ, D. VRETENAR. Phys Rev C,

2016, 94: 064310.
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Phys Rev C, 2017, 96: 064316.
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奇质量核的超越平均场玻色子费米子模型描述

K. Nomura1)

(萨格勒布大学理学院物理系；萨格勒布HR-10000，克罗地亚 )

摘要: 对近年发展起来的一个基于核密度泛函理论和粒子核心耦合方案来计算中重质量奇A核谱性质的理论方法

进行了评述。该方法首先在平均场层面通过选择合适的能量密度泛函和对力结构来自洽求解偶偶核心的势能曲面、

球单粒子能级和奇粒子占有率，进一步将得到的结果作为微观输入来建立相互作用玻色子费米子模型哈密顿量，其

中三个与粒子核心耦合强度相关的参数需要通过拟合一些特定奇质量核低激发谱数据来最终确定。通过对轴形变奇

质量Eu同位素的低激发能谱和电磁跃迁几率的系统研究来说明该模型方法的有效性。另外，还讨论了该方法在描述

轴形变奇质量核形状相变以及描述丰中子奇质量Ba同位素中八极关联方面的应用。
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