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Abstract：A new iterative approach for solving the standard pairing problem is established based on

polynomial approach. It provides an efficient way to derive the particle-number conserved pairing wave

functions for both spherical and deformed systems, especially for large-size systems. The method reduces

the complexity of solving a system for k-pairs polynomial equations into a system for one-pair polynomial

equation, which can be efficiently implemented by the Newton-Raphson algorithm with a Monte Carlo

sampling procedure for providing the initial guesses step by step. The present algorithm can also be used to

solve a large class of Gaudin type quantum many-body problems as a more than 100 orbitals and 50 pairs

system such as super-heavy nuclei and nuclear fission.
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1 Introduction

Nuclear pairing correlation, similar to the pair-

ing correlation in the Bardeen-Cooper-Schrieffer (BCS)

theory of superconductors, is a key ingredient from the

residual interactions of the nuclear shell model in eluci-

dating properties of the ground states and low-energy

spectra of nuclei, such as binding energies, odd-even

effects, single-particle occupancies, excitation spectra,

electromagnetic transition rates, beta-decay probabil-

ities, and so on
[1–6]

. The simple BCS approximation

and the generalized Hartree-Fock-Bogoliubov (HFB)

theory are successful in describing the pairing proper-

ties of open-shell nuclei. However, as an approximate

theory, both the BCS and the more refined HFB meth-

ods suffer from serious drawbacks in nuclei due to the

fact that the number of valence nucleons under the

influence of the pairing force is too few to be treated

by such particle-number non-conserved (quasi-particle)

approximations
[7–9]

. Alternatively, shell model calcu-

lations provide successful descriptions but face a com-

binatorial growth of model space sizes, and hence, for

heavy nuclei, truncation schemes are normally needed

and applicability is often limited by existing computer

resources. The Projected Shell Model (PSM) pro-

vides a way to overcome this difficulty
[10]

. By us-

ing the PSM scheme, it is shown that the projected

BCS vacuum for a well-deformed system is very close

to the SU(3) dynamical symmetry limit of an S-D

pair fermion system
[11]

. An exact solution of the stan-

dard pairing problem was first obtained by Richard-

son and is now referred to as the Richardson-Gaudin

method
[12–13]

. It has been observed recently
[14]

that

solutions of the standard pairing model can be ob-

tained from zeros of the associated extended Heine-

Stieltjes polynomials, which makes it feasible to ap-

ply the model with many valence nucleon pairs over

a large number of single-particle levels. Furthermore,

by using the extended Heine-Stieltjes polynomials, the

Nilsson mean-field plus standard pairing model is ap-

plied to describe the ground state phase transition in

Nd, Sm, and Gd isotopes, the analysis provides a mi-

croscopic picture that the ground state phase transi-

tional behaviors may be driven by the competition

between the Nilsson mean-field and the pairing inter-

action based on the present model
[15]

. In addition,

a recent study
[16]

provides a refined method to solve

the nonlinear Richardson equation for both deformed

and nearly spherical nuclei based on the polynomial

approaches shown in Refs. [17–18].

In this paper, we try to provide a new iterative ap-

proach to guess the initial values step by step, which

based on the fast Newton-Raphson algorithm with a

Monte Carlo sampling procedure. The goal of this

paper is to provide a flexible and practical approach

which can be used to solve a large class of Gaudin type
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quantum many-body problems such as super-heavy nu-

clei and nuclear fission.

2 The mean-field plus standard pair-
ing model and its exact solution

The Hamiltonian of the standard pairing model is

given by

Ĥ =
∑
j

ϵjn̂j−G
∑
jj′

S+
j S−

j′ , (1)

where the sums run over given j-levels of total number

n, G > 0 is the overall pairing strength, ϵj are non-

degenerate single-particle energies, n̂j =
∑

m a†jmajm
is the number operator for valence particles in the j-th

level, and S+
j =

∑
m(−)j−ma†jma†j −m (S−

j = (S+
j )†)

are pair creation (annihilation) operators. The formal-

ism is first presented for an even number of particles

that are all paired (seniority-zero case), while the gen-

eralization to an additional odd unpaired particle is

discussed in relation to the pairing eigen-energies. For

deformed system (doubly-degenerate orbitals as Nils-

son levels), ni = a†i↑ai↑+a†i↓ai↓ is the fermion number

operator for the i-th doubly-degenerate orbitals, and

S+
i = a†i↑a

†
i↓ [S−

i =(S+
i )† = ai↓ai↑] is pair creation [an-

nihilation] operator, The up and down arrows in these

expressions refer to time-reversed states.

According to the Richardson-Gaudin method, k-

pair eigenstates of Eq. (1) can be written as

|k;x⟩=S+(x1)S
+(x2) · · ·S+(xk)|0⟩, (2)

where |0⟩ is the pairing vacuum state satisfying

S−
j |0⟩=0 for all j, xi (i = 1,2, · · · ,k) are spectral pa-

rameters to be determined. It can then be verified by

using the corresponding eigen-equation that Eq. (2) is

the eigenstates of Eq. (1) only when the spectral pa-

rameters xi satisfy the following set of Bethe ansatz

equations:

1−2G
∑
j

ρj
xi−2ϵj

−2G

k∑
i′=1
( ̸=i)

1

xi−xi′
=0, (3)

where the first sum runs over all j-levels and ρj =

−Ωj/2 with Ωj = j + 1/2. For each x(ξ) solution,

the corresponding eigen-energy is given by E
(ξ)
k =∑k

i=1x
(ξ)
i .

According to the polynomial approach in Refs.

[16–18] one can find solutions of Eq. (3) by solving

the second-order Fuchsian equation Ref. [14]:

A(x)P ′′(x)+B(x)P ′(x)−C(P,x)P (x)= 0, (4)

where A(x) =
∏n

j=1(x−2εj), B(x) =
(

1
G +

∑
j

Ωj

x−2εj

)
and C(P,x)=

∑n
j=1

Ωj

x−2εj

(
P ′(2εj)
P (2εj)

)
A(x). The polyno-

mials P (x) with zeros corresponding to the solutions

of Eq. (3), which defined as

P (x)=
k∏

i=1

(x−xi)=
k∑
j

ajx
j , (5)

where k is the number of pairs and a are the expan-

sion coefficients to be determined and aj become the

unknown variables instead of the Richardson variables

xi. Furthermore, if we set ak = 1 in P (x), the coeffi-

cient ak−1 becomes equal to the negative sum of the

P (x) zeros, ak−1 =−
∑k

i xi =−Ek.

Particulary, If the value of x approaches twice the

single-particle energy of a given orbital jδ, i.e., x=2εδ,

one has(
P ′(2εδ)

P (2εδ)

)2

+(1−Ωδ)

(
P ′(2εδ)

P (2εδ)

)′
− 1

G

(
P ′(2εδ)

P (2εδ)

)
=
∑
j ̸=δ

Ωj

2εδ−2εj

[(
P ′(2εδ)

P (2εδ)

)
−
(
P ′(2εj)

P (2εj)

)]
. (6)

For doubly degenerate case, above equation set

reduces to a much simpler one as(
P ′(2εδ)

P (2εδ)

)2

− 1

G

(
P ′(2εδ)

P (2εδ)

)
−

∑
j ̸=δ

[(
P ′(2εδ)
P (2εδ)

)
−
(

P ′(2εj)
P (2εj)

)]
2εδ−2εj

=0. (7)

3 Iterative approach

The most time-consuming part of the numerical

algorithm is related to finding the roots of k coupled

polynomials in the unknown a0,...,k−1 coefficients in

Eq. (6). The Newton-Raphson algorithm (NR), which

is an extremely fast algorithm given an initial guess

{a00, . . . ,a0k−1}. The grid of initial guesses is selected by

using a Monte Carlo sampling within the boundaries

of the {a} coefficients derived from physical conditions.

The problems with the original method based on the

NR algorithm in Refs. [16–17] relate to detecting a

singular Jacobian matrix, which is irrelevant when a

Monte Carlo sampling is used, as it already perturbs

the initial guesses by choosing random numbers. So if

only a few initial guesses {a} input at the same time,

the convergence speed of the NR algorithm is really

fast, while, when more initial guesses {a} are consid-

ered, the detecting polynomial P 0(x) in Eq. (5) will be

far from the real form of P (x) that may lead to more

consuming time or even return a non-convergence so-

lution.

The new iterative approach to guess the initial

values of a0,...,k−1 in Eq. (6) is also based on the

NR algorithm with a Monte Carlo sampling proce-

dure. For a system with n orbitals and k pairs (n> k),
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firstly, we guess the initial values of a0,...,k−1 in Eq. (6)

from champions systems with a small number of pairs,

k=1 and the number of orbitals n=1, by using the

NR algorithm find the real form of P1(x) = (a0 +x),

and then according to P1(x) as well as the physi-

cal conditions guess the initial values {a00,a01} from

P 0
2 (x) = P1(x)× (x− 2ϵj + r) for k=2, n=2 case, r

is a random number from Monte Carlo sampling box.

In addition, substitute P 0
2 (x) in Eq. (5), similarly,

the NR algorithm employed to find the real form of

P2(x)= (a0+a1x+x2). Following this process, iterate

k times to find the Pk(x) for k pairs and n= k orbitals

system. Due to the number of {ak} coefficients inter-

related to the number of orbitals n, in the next loop,

we set Pk(x) which obtained above as the initial values

to guess solutions from the n= k+1 orbitals to n or-

bitals, the corresponding step is increasing one orbital

each time. Finally, the exact pairing solutions for the

n orbitals and k pairs system are calculated following

all those steps. The limitation of the new iterative ap-

proach is that the Eq. (5) claims n> k, so for the spher-

ical system with n<k is not within the scope of appli-

cation. While for the deformed system as well as the

spherical system with n> k, by using the new iterative

approach, the k-dimensional Monte Carlo sampling

procedure is reduced to the one-dimensional Monte

Carlo sampling procedure which significantly improved

the computational efficiency. This makes the exact

pairing solutions feasible even when more energy lev-

els or super-heavy nuclei are considered. The largest

system we handled at the current calculation is with

50 pairs and more than 100 orbitals, the calculation

efficiency is for k=10, k=20, k=30 and n=100 roughly

takes 50 s, 1.2 min and 2.5 min on a usual desktop

with Intel Core i7-2600k 3.40 GHz processor, that is

practically enough for all nuclear pairing problems. Es-

pecially, compared to the original method in Refs. [16–

17], lost of precision or failure to detect a zero typi-

cally result in missing solutions or providing solutions

that are far from convergence are avoided for a large

number of solution sets, that is reasonable for most

realistic applications in nuclear physics. Furthermore,

the new iterative approach can be easily extended and

applied to solve a large class of Gaudin-type quantum

many-body problems.

4 Discussion

4.1 Numerical analysis

To demonstrate the computational complexity of

the iterative approach, we consider the examples of

n = 1, . . . ,50 energy orbitals, the numbers of pairs

from k=1,. . . ,25 pairs. For all applications, the single-

particle energies used in Eq. (6) are equal spacing

ϵi = i/10 MeV, i= 0,1, . . . ,n and the pairing strength

G=0.001, 0.008, 0.025 and 0.032 MeV. Fig. 1 and

Fig. 2 show the ground-state energy of the Hamilto-

nian Eq. (1) as function of k as well as n for both the

doubly-degenerate with Ωi = 1 (j = 1/2) and high de-

generate with Ωi =1, . . . ,k (j=1/2, . . . ,k/2) cases. As

show in Fig. 1 and Fig. 2, the advantage of the itera-

tive approach is obvious that it avoid the non-solutions

problem in Ref. [17] and the numerical unstable fluc-

tuation in Ref. [16], the computational efficiency has

been significantly improved. Those results indicate the

new iterative approach is more feasible and reliable in

solving the standard pairing model and easily apply to

the large nuclear systems even for open shell calcula-

tions. Especially compared to the doubly-degenerate

Fig. 1 (color online)The ground-state energy (in MeV)
as a function of the orbital number n as well as
the number of pairs k=10 for a doubly-degenerate
system with Ωi = 1 (j = 1/2) and the pairing
strength G=0.001, 0.008, 0.025 and 0.032 MeV
under the present model.

Fig. 2 (color online)The ground-state energy (in MeV)
as a function of the orbital number n as well as
the number of pairs k = 10 for a high degenerate
system with Ωi =1, . . . ,k (j=1/2, . . . ,k/2) and the
pairing strength G=0.001, 0.008, 0.025 and 0.032
MeV under the present model.
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systems(Fig. 1), systems with high degeneracies will be

more challenging to solve. While for the high degen-

eracies systems, the iterative approach demonstrates

the same powerful processing (Fig. 1). Therefore, the

new iterative approach indeed can be straightforwardly

applied for both the doubly-degenerate systems and

degeneracies systems with large model spaces.

4.2 Role of the pairing interaction

Larger valence spaces that are necessary for good

descriptions of heavier systems which are typically very

difficult to be solved directly by employing the original

method. To gain the insight into the possible role of

the valence spaces as well as the pairing interaction un-

der the present model, the variation of ground-state en-

ergy as a function of the orbital number n and the pair-

ing interaction strength G is studied based on the new

iterative approach. Fig. 3 displays ground-state energy

obtained from the model space with n= 1, . . . ,100 or-

bitals and k=10 pairs, the single-particle energies are

equal spacing ϵi = i/10 MeV, i = 0,1, . . . ,n and de-

generacy Ωi = 1 (j = 1/2). It is clearly shown that

ground-state energy has an obvious change by varying

the pairing interaction strength from G=0 to G=0.05

MeV and the orbital number from n=10 to n=100.

Particularly, the lowest energy E=6.8 MeV appears

in the point of n=100 and G=0.05 MeV, which nat-

urally demonstrates that as an attraction, the con-

tribution of the pairing interaction is making the to-

tal energy of the system become lower. Furthermore,

for a given number of pairs, when more orbitals are

taken into account, the effect of the pairing interac-

tion is enhanced under the present model and the pair-

ing interaction is inversely proportional to the valence

Fig. 3 (color online)The ground-state energy (in MeV)
for a doubly-degenerate equally spaced model with
the number of pairs k=10, as a function of the
orbital number n as well as the pairing interaction
strength G.

spaces for the given values of ground-state energy that

is clearly described by the behavior of the iso-energy

curve shown in Fig. 3 As a short-range interaction, the

effect of the pairing interaction will be greatly weak-

ened after the half-filled cases (see Fig. 3 with n> 20).

4.3 The odd-even mass differences of Sm iso-
topes

The odd-even mass differences of Sm isotopes will

be fitted by using the iterative approach of standard

pairing model as examples to explore the feasibility in

large nuclear systems. we consider a realistic example

with a focus on Sm isotopes that adopts single-particle

energies from the Woods-Saxon potential in which the

deformation parameters β2 and β4 values extracted

from Ref. [19]. As an approximation, two valence

model space consisting of the sixth and seventh major

shell with 51 single-particle orbits for valence neutrons

will be considered and the proton pairs excitation will

be ignored. The odd-even mass difference is defined as

∆
(3)
c ≡ 1

2 (EB(Z,N)−2EB(Z,N−1)+EB(Z,N+1))
[20]

,

where EB(Z,N) is the binding energy, Z and N are

proton and neutron number, respectively. For the odd-

A systems, the levels blocked by the odd particle are

obtained from the lowest theoretical energy.

For pairing strength G=0.06 MeV, the odd-even

mass differences obtained using the present approach

are found to reproduce the experimental data remark-

ably well (Fig. 4). The consistency between the ex-

perimental and the theoretical results shown in Fig. 4

indicates that the present model describes the ground

state quantities of these nuclei rather well, the iterative

approach can be straightforwardly applied for heavy

nuclear systems and large model spaces, super-heavy

nuclei and unclear fission are a possible to be handled.

Fig. 4 (color online)The odd-even differences of
147−165Sm. Experimental values are denoted
as ”Exp.”, which are taken from Ref. [21], the
theoretical values calculated from the present
model are denoted as ”W.S.Th.” and the pairing
strength G=0.06 (MeV) .
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5 Conclusion

A new iterative approach for solving the standard

pairing problem is established based on a polynomial

approach. It provides convenient initial guesses for

both spherical and deformed systems, especially for

large-size systems by using the Newton-Raphson al-

gorithm with a Monte Carlo sampling procedure. It

reduced the k-dimensional Monte Carlo sampling pro-

cedure to the one-dimensional Monte Carlo sampling

procedure and avoid the non-solutions problem in

Ref. [17] as well as the numerically unstable fluctuation

in Ref. [16], which makes the computation significantly

more efficient and reliable than traditional approaches.

The advantage of the method makes the exact pair-

ing solutions feasible for both the doubly-degenerate

systems and degeneracies systems even when more en-

ergy levels or super-heavy nuclei are considered. The

approach can easily be extended and applied to solve a

large class of Gaudin-type quantum many-body prob-

lems. The results indicate that the present model can

be used to explore the super-heavy nuclei and nuclear

fission. Furthermore, it will be used to investigate the

possible effects of pairing interaction on nuclear fission

which may influence the prediction of the fission half-

lives.
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摘要: 建立了一种求解标准对力模型的新迭代方法。该方法基于标准对力模型的多项式方案，为球形和形变系统提

供了方便的初始值预测。特别是对于大尺寸系统，该方法将求解 k对多项式的系统方程式简化为分步求解 1对多项

式系统的迭代过程，并通过快速Newton-Raphson以及Monte Carlo采样算法逐步提供初始值预测。通过扩展，本

算法还可用于解决Gaudin型量子多体问题，例如考虑超过 100条轨道、50对的大尺寸系统，以及超形变核、核裂

变的研究中。
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