

《原子核物理评论》

www.npr.ac.cn Nuclear Physics Review

Started in 1984

Gamma全吸收型BaF,探测装置中子屏蔽体与吸收体的研究

栾广源 朱兴华 张奇玮 贺国珠 程品晶 阮锡超

Study of Neutron Shield and Absorber for Gamma Total Absorption Facility

ZHANG Qiwei, LUAN Guangyuan, HE Guozhu, CHEN Pinjin, RUAN Xichao, ZHU Xinghua 在线阅读 View online: https://doi.org/10.11804/NuclPhysRev.37.2019CNPC30

引用格式:

张奇玮, 栾广源, 贺国珠, 程品晶, 阮锡超, 朱兴华. Gamma全吸收型BaF, 探测装置中子屏蔽体与吸收体的研究[J]. 原子核物 理评论, 2020, 37(3):771-776. doi: 10.11804/NuclPhysRev.37.2019CNPC30

ZHANG Qiwei, LUAN Guangyuan, HE Guozhu, CHEN Pinjin, RUAN Xichao, ZHU Xinghua. Study of Neutron Shield and Absorber for Gamma Total Absorption Facility[J]. Nuclear Physics Review, 2020, 37(3):771-776. doi: 10.11804/NuclPhysRev.37.2019CNPC30

您可能感兴趣的其他文章

Articles you may be interested in

$B_4C_Al材料中子吸收性能检测技术研究$

Study on Neutron Absorption Testing Technology of B₄C_Al Material

原子核物理评论. 2019, 36(4): 462-470 https://doi.org/10.11804/NuclPhysRev.36.04.462

基于D-T紧凑型中子源的快中子照相准直屏蔽体设计及中子束特性模拟研究

BSA Design and Simulation of the Beam Characteristic for the Fast Neutron Radiography Based on a Compact Neutron Generator 原子核物理评论. 2017, 34(4): 762-767 https://doi.org/10.11804/NuclPhysRev.34.04.762

利用GEANT4和TALYS研究中子与铁作用的次级中子双微分截面

Calculation of Secondary Neutron Double Differential Cross Sections for Neutron Induced Reactions on Fe with GEANT4 and TALYS 原子核物理评论. 2020, 37(1): 104-108 https://doi.org/10.11804/NuclPhysRev.37.2019061

γ 辐照后硼硅酸盐玻璃的吸收光谱研究

Study on Absorption Spectra of Borosilicate Glasses Irradiated with γ Rays 原子核物理评论. 2017, 34(3): 641-645 https://doi.org/10.11804/NuclPhysRev.34.03.641

GEANT4和FLUKA计算256 MeV质子诱发散裂中子能谱

Calculation of Spallation Neutron Spectra Induced by 256 MeV Protons with GEANT4 and FLUKA

原子核物理评论. 2019, 36(1): 118-123 https://doi.org/10.11804/NuclPhysRev.36.01.118

基于¹⁰B₄C转换体的多层多丝正比室中子探测器模拟

Simulation of a Novel Neutron Detector Based on Multi-layer MWPC with ¹⁰B₄C Convertor

原子核物理评论. 2019, 36(1): 71-77 https://doi.org/10.11804/NuclPhysRev.36.01.071

文章编号: 1007-4627(2020)03-0771-06

Gamma 全吸收型 BaF_2 探测装置中子屏蔽体与吸收体的研究

张奇玮¹, 栾广源¹, 贺国珠¹, 程品晶^{1,2}, 阮锡超¹, 朱兴华³

(1. 核数据重点实验室,北京 102413;2. 南华大学核科学技术学院,湖南 衡阳 421001;3. 华能山东石岛湾核电有限公司,山东 荣成 264312)

摘要:中国原子能科学研究院已经建造完成了我国第一套全吸收型 BaF₂探测装置,采用瞬发 γ 测量法,精确测量中子俘获反应截面。中子源是利用 HI-13 串列加速器产生的脉冲化质子束,通过 ⁷Li(p, n) ⁷Be反应建 立。为了有效降低周围环境材料和探测器产生的散射中子本底,约束中子束流的形状,使用 MCNP 程序模 拟设计了屏蔽体,采用含硼聚乙烯 (B₄C 质量分数为5%)包裹5 cm 铅的方案,以及准直器采用平行孔的方案。 该设计使样品处的中子束斑平整均匀,直径约为2 cm,束斑外的中子注量降低5 个数量级, 7注量降低3 个 数量级。同时设计了中子吸收体 (外半径为10 cm,厚度为7 cm)用于吸收待测样品产生的散射中子。 MCNP 和 GEANT4程序的模拟结果表明:选择含硼聚乙烯 (¹⁰B₄C 质量分数为10%)作为中子吸收体的加工 材料,其中子吸收率达到了 80%,并设置1 MeV 的能量加和阈,能够满足在线测量中子俘获反应截面的实 验要求。

关键词: ∩全吸收型 BaF₂探测装置; 中子屏蔽体; 中子吸收体; MCNP; GEANT4 中图分类号: O571.1 **文献标志码:** A **DOI:** 10.11804/NuclPhysRev.37.2019CNPC30

1 引言

中子俘获反应即 (n,γ) 反应是引起中子消失主要的 核反应,其截面数据的精度直接影响快堆、ADS、钍-铀混合堆等先进核能装置的设计与建造;在核反应理论、 核天体物理等研究领域,也需要高精度的中子俘获反应 截面数据。由于中子源的缺乏和测量方法的局限性,使 得我国在 keV 能区中子俘获反应截面的实验数据几乎是 空白。为了改变这一现状,中国原子能科学研究院研制 了 γ 全吸收型 BaF₂探测装置 (Gamma-ray Total Absorption Facility, GTAF)^[1],以开展在线测量中子俘 获反应截面的实验研究。本研究针对该装置设计了中子 屏蔽准直体和中子吸收体,用于降低散射中子引起的本 底,有效提高效应本底比,为下一步开展在线实验测量 奠定基础。

2 Υ 全吸收型 BaF₂探测装置简介

GTAF装置是由12个五棱锥台和28个六棱锥台形 状的BaF2晶体组成内半径为10cm厚度为15cm的探测 器球壳,它对[\]射线有很高的探测效率,同时也有很好 的时间分辨率和能量分辨率^[2]。整套测量系统的原理如 图1所示,中子源产生的脉冲化中子经过屏蔽准直体后, 形成特定直径的中子束,与放置在GTAF探测器球壳 中心的样品发生中子俘获反应,反应产生的复合核处于 高激发态,通过发射多条级联γ射线的方式退激。这些 γ射线穿过中子吸收体后,被几乎覆盖了4π立体角的 BaF₂探测器模块探测,实现对中子俘获事件的记录。 另外,将采用飞行时间法测量中子束能谱,以确定发生 俘获反应的中子能量。未发生反应的中子会穿出 GTAF探测器球壳,利用安装在其后端的锂玻璃探测 器监测中子注量^[3-4]。

3 中子屏蔽准直体

3.1 屏蔽准直体的材料选择

本研究利用中国原子能科学研究院的HI-13 串列加 速器,使用脉冲化的质子束,通过⁷Li(p,n)⁷Be反应, 建立能量范围在8~850 keV的白光中子源,其中子能谱 通过TARGET程序^[5]模拟得到(如图2(a)所示),将作 为本研究模拟使用的入射中子谱。实验中,中子源产生 的中子会向4π方向发射,如果打到周围的环境材料和 探测器上,会形成散射中子及次生γ射线,给BaF₂探

基金项目:国家自然科学基金资助项目(11605294,11675268,11790321,11975317)

收稿日期: 2019-12-30; 修改日期: 2020-04-24

作者简介:张奇玮(1982-),男,甘肃镇原人,副研究员,博士,从事粒子物理与原子核物理研究: E-mail: zqwvictor@126.com。

图 2 (在线彩图)TARGET 程序模拟得到的中子能谱(a)与中子透射率随不同材料厚度的变化(b)

测器带来很高的本底计数,因此,对中子源进行屏蔽准 直十分必要。

实验要求样品处的中子注量率要尽量高, 束斑外的 中子注量要迅速下降, 束斑坪区强度尽可能均匀并完全 覆盖样品 (样品直径2 cm)。由于中子不带电, 不可被 聚焦, 只能通过中子准直器来获得均匀平行的中子束。 同时, 中子经屏蔽准直体材料散射和吸收后会放出次 生³射线, 需要在屏蔽准直体的外层设计屏蔽材料, 用 于次生³射线的吸收^[6]。

常用的中子屏蔽材料通常有:聚乙烯(CH₂)、石蜡 (C_nH_{2n+2})、含硼聚乙烯(B₄C质量分数为5%)、水(H₂O) 和石墨(C)等。作为等效成分相似的材料,聚乙烯的机 械和温度性能优于石蜡,且易加工成形,添加了B₄C 的含硼聚乙烯被广泛地用于中子慢化和吸收。

图 2(b) 给出了 MCNP(版本 4C)^[7] 程序模拟不同屏 蔽材料的中子透射率,对中子屏蔽效果的排序为: 含硼 聚乙烯>聚乙烯>水>石墨。35 cm 厚度的含硼聚乙烯可 使中子注量降低 5 个量级; 50 cm 厚度的含硼聚乙烯可 使中子注量降低 8~9 个量级,因此选择含硼聚乙烯作为 屏蔽准直体的主体材料。

入射中子被含硼聚乙烯中的轻元素慢化为热中子后, 主要通过 ${}^{10}B(n, \alpha)^{7}Li$ 、 ${}^{10}B(n, \alpha)^{7}Li^{*}反应被吸收, 分$ 支比为 7%和 93%。激发态的 ⁷Li退激后会放出 0.478 MeV 的γ射线,这是设计中需要重点考虑的问题。 使用 MCNP程序模拟了中子穿过 35 cm 含硼聚乙烯后 产生的次生γ射线,其能谱如图 3(a) 所示。重金属材料 对上述能量γ射线的屏蔽效果排序为:铅>铜>铁(见图 3(b) 所示),在屏蔽准直体的外层包裹5 cm 的铅板,可 以使次生γ射线的注量降低 4~5 个数量级。

3.2 屏蔽准直体的设计与模拟

在中子俘获反应截面测量中,为提高样品处的中子 注量率,应该尽可能地减小样品与中子源的距离;同时, 使用中子飞行时间方法测量中子能谱时,为提高中子的 能量分辨率,样品与中子源需要保持一定的距离。综合 上述这两方面因素,再结合GTAF探测器支架的摆放 位置、屏蔽准直体的支撑等因素,确定处于GTAF球 壳中心位置的样品到中子源的距离为108 cm;中子源 ⁷Li靶的直径是0.8 cm;样品直径是2 cm;准直器长度 取为50 cm。

选择含硼聚乙烯作为准直器的材料,另外需要优化 准直孔的形状。常用的准直孔形状分为两类:平行型和 对顶双锥型。平行型的准直孔是圆柱形状,而对顶双锥 型准直孔根据双锥截顶的位置不同,又可以分为几类 (见图4所示)^[8]。

图 3 (在线彩图)中子经过含硼聚乙烯产生的次生 \ 射线能谱 (a) 及 \ 射线透射率随不同材料厚度的变化 (b)

采用 MCNP 程序模拟了不同形状准直器输出的中 子束注量的分布,设置面源直径为0.8 cm(与⁷Li靶符 合),以中子源的单个中子作为归一化标准。图 5 所示 的结果可以看出,几种不同形状准直的中子束注量分布 没有太大的差异。考虑到加工的难易程度,选择孔径 为1.3 cm 的平行型准直器作为方案,此时样品处中子 束斑的直径约为2 cm,与样品直径吻合。束斑内中子 强度均匀,距离束流中心轴 2.5 cm 处的中子注量比束 斑中心降低 3~4 个数量级^[9]。

图 5 (在线彩图)不同形状的准直器在样品处的中子束 注量分布

根据上述讨论,本研究确定的屏蔽准直体的方案如 图 6 所示^[10],屏蔽准直体的主体材料是含硼聚乙烯, 采用了全包围设计,留出加速器束流管线的通道。从设 计图中看到,中子需要穿过 35 cm 以上厚度的含硼聚乙

图 6 屏蔽准直体的几何结构图

烯,才能进入到环境中去,此处的中子注量至少降低 了5个数量级。同时在屏蔽准直体的外层包裹5 cm厚 的铅板,用于屏蔽次生?射线。图7的模拟结果表明: 增加5 cm铅屏蔽使样品处?射线本底注量降低3个量 级(以中子源的单个中子作为归一化标准)。

4 中子吸收体

4.1 中子吸收体的材料选择

样品的中子俘获反应发生在GTAF探测器球壳的 中心处,样品处的散射中子是本底的一个主要来源。在 样品与探测器球壳之间放置中子吸收体,是为了减少散 射中子引起的本底,同时要求中子吸收体尽量不影响中 子俘获事件的采集。40块BaF₂探测器模块围成了1个 半径为10cm的球形空腔,考虑到样品的尺寸、中子束 斑以及束晕的大小,中子吸收体允许设计成一个外半径 为10cm,厚度最大为7 cm的球壳,选择含有⁶Li和 ¹⁰B的材料能够满足实验要求^[11-12]。

由于样品与 keV 能区的中子主要发生弹性散射, MCNP 程序模拟使用的散射中子能谱也采用上述的入 射中子谱,含⁶Li和¹⁰B 材料的中子吸收率见图 8 所示, 其中⁶LiH 材料⁶Li在 Li元素中含量为 90%,¹⁰B₄C 材料 ¹⁰B在 B元素中含量为 95%,含硼聚乙烯(¹⁰B₄C)材料 ¹⁰B₄C 的质量分数为 10%,作为对比,还模拟了含有天 然 Li和 B 材料的中子吸收效果。由模拟数据可以看到, 厚度为7 cm 的⁶LiH、¹⁰B₄C 和含硼聚乙烯(¹⁰B₄C)的中 子吸收率都能达到 80% 左右,而天然材料的中子吸收 效果较差。从表 1 中可以看到,这三种材料(厚度为 7 cm)对 1 MeV 以上的⁷射线也有很好的透射率,由于 次生⁷射线的影响,甚至还出现了增值,因此上述三种 材料可作为中子吸收体的候选材料。

图 8 (在线彩图)中子吸收率随不同材料厚度的变化

表 1 中子吸收体材料对不同能区 γ射线的透射率

∩射线能量/MeV	6 LiH	$^{10}\mathrm{B}_{4}\mathrm{C}$	含硼聚乙烯(¹⁰ B ₄ C)
< 0.1	0.830	0.407	0.627
$0.1 \sim 1$	1.006	0.986	1.006
$1 \sim 5$	1.024	1.077	1.039
$5 \sim 10$	1.043	1.160	1.081

4.2 中子吸收体的设计与模拟

为了更好地评估中子吸收体对 γ射线能谱的影响, 本研究使用单个 BaF₂探测器模块测量了¹³⁷Cs 和⁶⁰Co 源的 γ射线能谱^[13-14],并与无吸收体时 GEANT4(版 本 10.4)^[15] 的模拟结果 (设置探测器的能量分辨率为 20%)进行了对比。如图 9 所示,两者很好得吻合验证 了模拟数据的可靠性。实验结果在能量大于 1.5 MeV 的 位置出现了四个峰,这是由 BaF₂ 晶体材料中 Ra的 α衰 变引起的,属于探测器自身的本底,可以通过符合测量 的方法去除,同时为了降低电子学噪声的影响,探测器 模块的阈值设为 50 keV。通过模拟对比发现,三种候选 吸收体材料对¹³⁷Cs 和⁶⁰Co 源 γ射线能谱的影响排序为:

图 9 (在线彩图)中子吸收体对 BaF₂探测器模块 \ 射线 能谱的影响

 6 LiH<含硼聚乙烯 ($^{10}B_{4}C$)< $^{10}B_{4}C$ 。

在线测量中子俘获反应截面时,待测样品的中子结 合能等于级联γ射线的能量总和,范围是6~9 MeV,级 联γ射线条数的最可几值在4~5之间,绝大部分级联γ 射线的能量大于1 MeV。因此GTAF采用符合测量的 方式,当两个或者两个以上的探测器同时测量到γ射线 时(符合时间窗为48 ns),记录为一个俘获事件。这种 方法可以去除绝大多数的本底,包括BaF2晶体自身的 α粒子、电子学噪声、宇宙射线的影响等。

放置⁶⁰Co源在GTAF探测器球壳的中心,通过40

图 10 (在线彩图)GTAF 测量⁶⁰Co源和¹⁹⁷Au中子俘获反应的加和能谱

文献[17]的研究结果表明,在线实验时,加和能谱的低能部分(<1 MeV)会存在很高的本底计数,为了提高效应本底比,需要设置一个能量加和阈,即在符合测量中,所有探测器模块测得的[¬]射线能量相加后高于能量加和阈,才被记录为中子俘获事件。表2列出GTAF测量¹⁹⁷Au中子俘获事件探测效率的模拟结果,可见能量加和阈设置的越低,探测效率越高,因此在线实验的能量加和阈值选择为1 MeV。

表 2 中子吸收体材料对 GTAF 测量 197Au 中子俘获事件探测效率的影响

能量加和阈/MeV	无吸收体	⁶ LiH	$^{10}\mathrm{B}_{4}\mathrm{C}$	含硼聚乙烯(¹⁰ B ₄ C)
1	0.991	0.918	0.801	0.895
1.5	0.987	0.904	0.776	0.878
2	0.978	0.885	0.747	0.857
2.5	0.965	0.864	0.722	0.836

5 总结与讨论

基于中子源的条件,本研究设计了GTAF在线测 量中子俘获截面实验的中子屏蔽准直体,使用了全包围 的设计方案,主体材料是含硼聚乙烯(B₄C质量分数为 5%),使中子注量降低了5个数量级;外边再包裹5 cm 的铅, 使 ∩ 注量降低了3个数量级。为了便于加工, 准 直器采用了平行孔的设计, 长度为50 cm, 样品处中子束 斑平整均匀, 直径约为2 cm, 达到了中子源的实验要求。

通过模拟计算,中子吸收体确定为一个外半径 10cm,内半径3cm,厚度7cm的球壳。⁶LiH材料的效 果最好,但考虑到⁶Li购买的难度,价格以及加工的便 利性,最终确定含硼聚乙烯(¹⁰B₄C的质量分数为10%) 用于中子吸收体的加工,其效果接近于⁶LiH,对中子 的吸收率达到了80%,能够满足在线测量实验所需的效 应本底比设计要求,并且选择能量加和阈为1MeV。

参考文献:

- ZHONG Qiping, ZHOU Zuying, TANG Hongqing, et al. Chinese Physics C, 2008, 32(Suppl2): 102.
- [2] MA Xiaoyun, ZHONG Qiping, ZHOU Zuying, et al. Atomic Energy Science and Technology, 2009, 43(2): 180. (in Chinese) (马霄云, 仲启平, 周祖英, 等. 原子能科学技术, 2009, 43(2): 180.)
- [3] ZHANG Qiwei, HE Guozhu, RUAN Xichao, et al. Nucl Phys Rev, 2013, 30(2): 99. (in Chinese)
 (张奇玮, 贺国珠, 阮锡超, 等. 原子核物理评论, 2013, 30(2): 99.)
- [4] SU Ming, ZHONG Qiping, ZHENG Yulai, et al. Atomic Energy Science and Technology, 2009, 43(10): 946. (in Chinese) (苏明, 仲启平, 郑玉来, 等. 原子能科学技术, 2009, 43(10): 946.)

- [5] SCHLEGEL D. TARGET User's Manual[R]. PTB-6.42-05-2, 2005.
- [6] HE Guozhu. The Development of a 4π BaF₂ Scintillator Detector Used for the Measurement of (n, ^γ) Reaction Cross-Sections[D]. Lanzhou: Lanzhou University, 2006: 51. (in Chinese) (彼国珠. (n, ^γ)截面测量用4πBaF₂探测器制造研究[D]. 兰州: 兰

(页固环. (h,))截面测重用4.tbar₂7.k测益可起可元[D]. 三州: 三 州大学, 2006: 51.)

- [7] BRIESMEISTER J F. MCNP A general Monte Carlo Nparticle transport code, Version 4C[R]. US: Los Alamos National Laboratory, 2000.
- [8] WANG Qiang. The GTAF Detector Shield Body System MCNP Analog Computation Design[D]. Lanzhou: Lanzhou University, 2007: 30 (in Chinese), (王强. GTAF探测器屏蔽体系统的MCNP模拟计算设计[D]. 兰 州: 兰州大学, 2007: 30.)
- [9] ZHANG Qiwei. Study of Measurement of Neutron Capture Cross Section Based on Gamma-ray Total Absorption Facility[D]. Beijing: China Institute of Atomic Energy, 2015: 22. (in Chinese)

(张奇玮.基于全吸收型探测器的中子俘获反应截面测量方法的研究[D].北京:中国原子能科学研究院,2015:22.)

[10] SHI Bin, PENG Meng, ZHANG Qiwei, et al. Atomic Energy Science and Technology, 2018, 52(9): 1537. (in Chinese) (石斌, 彭猛, 张奇玮, 等. 原子能科学技术, 2018, 52(9): 1537.)
[11] HUANG Xing, HE Guozhu, CHEN Pinjing, et al. Nuclear Physics Review, 2015, 32(2): 208. (in Chinese)

(黄兴, 贺国珠, 程品晶, 等. 原子核物理评论, 2015, 32(2): 208.)

- [12] CHENG Pinjing. Study on a New Experimental Method for the Reaction of ²⁴¹Am (n, γ) ^{242m, g}Am[D]. Hengyang: University of South China, 2012: 74. (in Chinese) (程品晶. ²⁴¹Am (n, γ) ^{242m, g}Am反应实验新方法研究[D]. 衡 阳: 南华大学, 2012: 749.)
- [13] ZHANG Qiwei, HE Guozhu, HUANG Xing, et al. Atomic Energy Science and Technology, 2014, 48(Suppl1): 70. (in Chinese)
 (张奇玮, 贺国珠, 黄兴, 等. 原子能科学技术, 2014, 48(Suppl1): 70.)
- [14] ZHAO Jian, HE Guozhu, YAN Yongjun, et al. Atomic Energy Science and Technology, 2013, 47(4): 669. (in Chinese) (赵健, 贺国珠, 颜拥军, 等. 原子能科学技术, 2013, 47(4): 669.)
- [15] ALLISON J, AMAKO K, APOSTOLALIS J, et al. Nucl Instr and Meth A, 2016, 835: 186.
- [16] ZHANG Qiwei, HE Guozhu, HUANG Xing, et al. Atomic Energy Science and Technology, 2016, 50(3): 536. (in Chinese) (张奇玮, 贺国珠, 黄兴, 等. 原子能科学技术, 2016, 50(3): 536.)
- [17] GUERRERO C, ABBONDANNO U, AERTS G, et al. Nucl Instr and Meth A, 2009, 608(3): 424.

Study of Neutron Shield and Absorber for Gamma Total Absorption Facility

ZHANG Qiwei^{1,1)}, LUAN Guangyuan¹, HE Guozhu¹, CHEN Pinjin^{1,2}, RUAN Xichao¹, ZHU Xinghua³

(1. Science and Technology on Nuclear Data Laboratory, Beijing 102413, China;

2. School of Nuclear Science and Technology, University of South China, Hengyang 421001, China;

3. Huaneng Shandong Shidao Bay Nuclear Power Co.Ltd, Rongcheng 264312, China)

Abstract: The first gamma total absorption facility (GTAF) in China has been constructed in China Institute of Atomic Energy, which will be used to accurately measure the neutron capture cross section by prompt gamma method. A neutron source is established by ⁷Li(p, n)⁷Be reaction using pulsed proton beams generated by HI-13 tandem accelerator of CIAE. In order to effectively reduce the scattering neutron background produced by surrounding materials and detectors, and restrain the shape of neutron beam, neutron shield with boron-containing polyethylene (5% of B₄C) coated with 5 cm lead and collimator of parallel hole are designed by MCNP program. The design makes spot of neutron beam flat and uniform, the diameter is about 2 cm, the flux of neutron outside the same time, neutron absorber (the outer radius is 10 cm, the thickness is 7 cm) is designed, which is used to absorb the scattered neutrons produced by the sample to be measured. The simulation results of MCNP and GEANT4 show that the boron containing polyethylene ($^{10}B_4C$ mass fraction is 10%) is selected as the processing material of neutron absorber, in which the rate of neutron absorption reaches 80%, and the threshold of sum energy is set to 1 MeV, which meets the requirement of on-line experiment about the measurement of neutron capture cross section.

Key words: gamma-ray total absorption BaF₂ Detector facility; neutron shield; neutron absorb; MCNP; GEANT4

Foundation item: National Natural Science Foundation of China(11605294, 11675268, 11790321, 11975317)1) E-mail: zqwvictor@126.com.

Received date: 30 Dec. 2019; Revised date: 24 Apr. 2020