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Abstract: An independent theoretical analysis is presented for the 2 band in ?*®Cf, which has been iden-
tified to spin 254 and excitation energy >4 MeV, implying the fission barrier persists at least up to that
angular momentum and excitation for the configuration. The underlying physics for the experimentally ob-
served band is discussed in terms of alignment properties and decay pattern. Different scenarios for as-
sumptions about intrinsic configuration are assessed with transition rates analysis. It turns out that only
by invoking a particle-phonon mixing picture can the decay characteristics of the pair of bands be well ac-
counted for, i.e. quasiparticle nature forbids decay to ground-state band, non-axial octupole phonon shifts
the signature partners in energy and diminishes mutual interaction. The coexisting normal and supercon-
ducting phases are tentatively attributed to weak neutron pairing in the proximity of 152 deformed shell

gap.
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1 Introduction

A long-standing challenge in nuclear physics re-
search has been the exploration of nuclei at the limits
of existence. One extreme region is that of high mass
and charge, the superheavy elements (SHEs). Super-
heavy nuclei should fission instantaneously due to the
Coulomb repulsion between protons. However, shell
effects lead to additional binding and create a sizable
barrier against fission 3. A large shell correction was
also predicted to be responsible for extra stability
gained by nuclei around A~ 252 4)
ginating from next spherical shell closures are brought
down by deformation in close vicinity of the Z~100
and N ~152 Fermi surface. Since the observation of a
highly collective rotational band in 254Nl
shell stabilization was found in a few of its even-
even(0 14 and odd-A[1719) neighbors with large ground-
state deformation. While it is known that these mid-
shell nuclei gain additional binding due to new shell
gaps that open up at finite deformation, it is not clear
how the rotational force would affect the fission barri-
er which arises from shell effects. Spectroscopy of
heavy actinide nuclei to high spin states could provide
valuable information on the excitation and angular

where orbitals ori-

, proof of

momentum dependence of the fission barrier and test
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the pervasiveness of shell effects on stability of the
metastable liquid drop systems, knowledge of which, is
essential for understanding the production mechan-
ism of SHEs. On the other hand, as shape stability is
a result of competition among several deformation de-
grees of freedom, it would be interesting to see wheth-
er multipole interactions of the orbitals that are act-
ive around the Fermi surface give rise to certain exot-
ic nuclear shapes. An idea was proposed long time
2 0 terms of possible
presence of the pyramid-like (tetrahedral) shapes in
nuclei with the conclusion that extremely strong nuc-
lear shell effects leading to a tetrahedral symmetry
may exist in nature on a sub-atomic level. More re-
cently, it was suggested in Ref. [22], based on the Re-
flection Asymmetric Shell Model calculations on nuc-
lei from Cm to Hs, that the above-mentioned exotic

ago[2o] and reanalyzed later!

shape may manifest itself in the very heavy mass re-
gion through the first order nonaxial-octupole Y3, de-
formation. Such an effect is expected to be strongest
at Z=098. Indeed, low-lying 2- states have been iden-
tified in a few even-even nuclei with corresponding Z
and N. Systematics of 2- bands up to high-spin states
could test predictions for nuclei subject to non-axial
octupole correlations, and provide insight on the delic-
ate interplay between various degrees of freedom un-
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der rotational stress. Overall, detailed 7 spectroscopy
studies on heavy actinide nuclei can guide one to-
wards optimal conditions for further spectroscopic in-
vestigations of the heaviest nuclei and provide an ex-
cellent testing ground for competing effective interac-
tions used nowadays in the description of nuclear
structure properties. Progress on both sides will lead
to an improved understanding of various correlations
and effects including self-organization of single-particle
states, pairing, subshell gaps, and shapes of the under-
lying nuclear force.

2 Experiment and results

The theoretical analysis in the present work util-
izes experimental data from Argonne National Lab ob-
tained via inelastic/transfer reactions with a 208pp,
beam impinging on a 2M9cf target. The major aim of
the experiment was to investigate structure proper-
ties of neutron-rich Cf, among which 2*3Cf was pro-
duced by the 1-n pick-up reaction. The experimental
setup, analysis and results that are presented in this
section will be published separately by the experi-
mental collaboration. Specific selected results and dis-
cussion pertinent to the theoretical interpretation that
is the focus of this work are highlighted and refer-
enced in this section.

Fig. 1 presents sample spectra of the 2— bands of
28Cf from Ref. [23]. The experimental assignment of
the pair of bands to 2*8Cf was based on the presence
of Cf characteristic K X-rays together with the
778.9 and 1 422.6 keV ground-state transition in 2*?Pb.
Connection of observed
known levels relied on coincidence relations and spin
fitting, which was first introduced by Wul?4 and then
applied in Refs. [25—26] for either spin determination
or extrapolation of band head excitation energies. As
shown in Fig. 2 which takes one of the bands for ex-
ample, values of initial spin proposed for the first un-
ambiguous transition (174.2 keV) were tested against
the experimental points using a rotational model ex-
pression. The reduced x? obtained from these fits are
plotted against corresponding spin assumptions (Inset
of Fig. 2). A clear preference of I;,;;=8 is indicated.
The optimal spin fit, when extrapolated to lower
spins, yields next two transition energies within 2 keV
of the previously known 6~ — 4- — 2— cascade of a
2~ band. This, together with a few observed gamma-
rays deexciting the 2— band, indicates the same iden-
tity for the observed cascade. The new structures were
thus treated as the high-spin part of K™=2- band.
The ordering of new gamma-rays in the cascade re-
lied on energies as well as on the relative intensities of

structures to previously

the transitions. The spin and parity of the new states
were based on assignment of low-spin part in earlier
work and assumed that the cascade transitions are of
stretched-E2 character. No inter-band transitions were
identified, though evidence existed that there was
weak coincidence between the signature partners. For
both branches, the gamma-ray flux tended to stay in-
band and decay via 550.4 keV E1 transition to the 2+
member of the ground-state band; Strength of out-of-
band decay was observed to drop fast with increasing

spin.
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Fig. 1  (color online)Representative coincidence spec-
tra for band 1 and 2, Cross-coincident transitions
from projectile-like binary reaction partners are
shown in the inset(from Ref. [23]).
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Fig. 2 (color online)Rotational model fit to experi-

mental transition energies. Energies of the two
lowest transitions are indicated in green dots. The
inset shows reduced x? of the fits as a function of
the initial spin of first unambiguous transition
(from Ref. [23]).

3  Discussion

The signature partners of the 2— band were ob-
served with similar intensity. The odd and even
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branches were traced to spin 25A and 24k respect-
ively, implying that rotation can compete against fis-
sion at least to corresponding spins for the configura-
tion. The experimental alignment for the negative
parity bands extracted is given in Fig. 3, together
with the ground state band. The alignment of the
K™=2- band is seen to build up smoothly and ap-
pears to saturate at a rotational frequency =~0.17
MeV. Over the experimentally covered frequency
range, neither sequence reaches 3k as expected for the
alignment of an octupole phonon. This renders the
character of the band puzzling.
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(color online)Angular momentum alignment
for ground-state and octupole band in 218¢f caleu-
lated using fitted Harris parameters(from Ref.
[23]).

Fig. 3

It was suggested, in an earlier 24°Cf(d, t)*8Cf ex-
periment[m, that the 2- state at 593keV has both
two-quasineutron {9/2[734], 5/2[622]} and phonon
components and the major component for the octu-
pole phonon is the two-quasiproton {7/2[633], 3/2[521] }
configuration. One explanation for the alignment be-
havior is that the 2— band loses its phonon character
rapidly when rotation is imposed. This can account
for the low alignment maximum where the phonon
may be broken before it can fully align. Under such
assumption, the band would exhibit characteristics as
expected for the corresponding two quasi-particle con-
figuration. Level spacing and decay pattern for the
presumed v[734]9/2” ® v[622]5/2% and w[521]3/2”®
7[633]7/2% bands are therefore investigated. Experi-
mentally, both neutron [734]9/2~ and [622]5/2% bands
have been observed in the neighboring nucleus 290
to high spin states. The information for the two pro-
ton configuration bands is limited. Only a few low-ly-
ing states exist in literature for either configuration[%].
Regarding the decay pattern, B(M1)/B(E2) ratios for
both two-quasiparticle configurations are desired.
Since neither 7[521]3/2~ ® 7[633]7/2" nor v[734]9/2~®

v[622]5/2" configuration band is experimentally avail-
able, theoretical values are obtained instead. The res-
ulting branching ratios as deduced from theoretical
B(M1)/B(E2) is shown in Fig. 4. It is clear that the
proton configuration is highly unlikely as this would
lead to stronger observed AJ = 1 cascade transitions
than E2 crossovers. A pure v[734]9/2~ ® v[622]5/2%
configuration is also not quite probable. The signa-
ture partners are much more weakly interacting as op-
posed to quasineutron bands with similar T(M1+E2)/
T(E2) as the theoretical values. If the reduced mutu-
al interaction between the partner bands is due to
mixing of other two-quasiparticle states, one may need
to answer quantitatively whether such mixing arises
from the breaking of an octupole phonon, and why the
phonon is vulnerable to rotation in this specific nucle-
us. A clarification of these issues requires a detailed
QRPA calculation which is not available at this point.
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Fig. 4 (color online)M1/E2 branching ratios under pure

2.qp {7/2[633], 3/2[521]}2 and 2-qn {9/2[734],
5/2[622] }2 assumptions.

It is also possible that the deviation of character-
istics from the pure two quasiparticle band arises from
some other effects. Chen et al.[2? suggest nuclei in the
mass-250 region with proton number from 96~ 108
may exhibit strong Ys, correlations and, the correla-
tion is strongest at Z=98 due to near-degeneracy of
the proton 7/2[633] and 3/2[521] orbitals which in-
creases octuple collectivity and leads to pronounced
minimum in 2~ energy. Theoretical intraband
B(M1)/B(E2) and interband B(E1)/B(E2) ratios un-
der pure collective Y, + Y3, assumption are  dis-
played in Fig. 5. The B(M1)/B(E2) drops to ~50%
the initial value over few spins and are nearly con-
stant after spin 8. The derived M1/E2 branching ra-
tios are two orders of magnitude lower as compared to
the hypothesized 2-qn configuration. The B(E1)/B(E2)
values, on the other hand, increase steadily with spin
and are of the same order as those reported for octu-
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pole bands in neighboring isotopes, either of which, is
in contrast to the experimentally observed decay pat-
tern. The underlying physics could perhaps be ex-
plained by evoking the two-band mixing scenario.
Mixing with a higher lying phonon band pushes the 2-
qp band down and results in distinctive characterist-
ics for the observed band. It is worth noting that
while the 2 band in 243Cf is more characteristic of a
quasiparticle configuration, we find, a few other nuc-
lei in this mass region do exhibit features as expected
for a tetrahedral shape by theory, both in level en-
ergy spacings and in electromagnetic properties.
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(color online)RASM predicted B(M1)/B(E2)
and B(E1)/B(E2) ratios for pure collective Yao
band.

Fig. 5

The 2- level energies are rather constant over a
wide span of Z for N =150 isotones, except in 248y,
where there is a 34% dip at an excitation energy of
593keV. It is interesting to note that the singular
drop of the 2— energy is accompanied by a transition
in character of the corresponding band. Standard BCS
approach requires energy greater than two times the
pairing gap, i.e. approximately 1 MeV as derived from
experimental odd-even mass difference in this case, for
a two-quasineutron excitation. Venkova et al129)
posed, based on systematics of g-s crossing in Yb nuc-
lei, that static pair field is absent in the heavy Yb iso-

pro-

topes, where pair fluctuations smear an already rather
smooth pairing phase transition. This finding is of in-

terest for neutron-rich Cf where a similar weak pair-
ing regime seems to be present. One plausible explan-
ation for the suppressed collectivity is the weakening
of static neutron pairing near N =152 subshell gap,
which indicates strong fluctuations and mixing of con-
figurations. Consequently, the nucleus exists with con-
siderable probability in the normal phase already at
rather low excitation energy. It is not clear at this
point what the role of neutron-proton interaction is on
the correlations of the 2*3Cf nucleus, recent results
presented by Hinohara et alPO3Y seem to highlight
however, the importance of mixing of the neutron and
proton pairing rotational NG modes in accounting for
the ground state properties of open-shell even-even
nuclei.

4 Summary and outlook

A theoretical analysis of 2— bands that have been
experimentally identified in 248Cf up to spin 25h 23]
was undertaken in this work. Alignment properties
and decay pattern for the newly observed structure
were investigated. Based on RASM calculations, the
decay features for the band can be qualitatively ac-
counted for within a quasiparticle phonon admixture
picture, i.e. quasiparticle nature forbids decay to
ground-state band, non-axial octupole phonon shifts
the signature partners in energy and diminishes mutu-
al interaction. The observed coexisting phase is tent-
atively attributed to weak neutron pairing in the
proximity of 152 deformed shell gap. Investigation of
the impact of neutron-proton interaction on the evolu-
tion of octupole collectivity in the isotones is on the
way.
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