[1] BECQUEREL A H. On Radioactivity, a New Property of Matter [EB/OL]. [2023-01-18]. http://physics.gmu.edu/~rubinp/courses/123/becquerel-lecture.pdf.
[2] 马余刚. 原子核物理新进展[M]. 上海: 上海交通大学出版社, 2020.

MA Yugang, Recent Progress in Nuclear Physics[M]. Shanghai: Shanghai Jiao Tong University Press, 2020. (in Chinese)
[3] ABEL E P, AVILOV M, AYRES V, et al. J Phys G: Nucl Part Phys, 2019, 46(10): 100501. doi:  10.1088/1361-6471/ab26cc
[4] MAGILL J, GALY J. Radioactivity - radionuclides - radiation: Including the Universal Nuclide Chart on CD-ROM[M]. New York: Springer-Verlag Berlin Heidelberg, 2004.
[5] SODDY F. Nature, 1923, 112(2806): 208. doi:  10.1038/112208a0
[6] Nuclide Physics Britannica[EB/OL].[2023-01-18]. https://www.britannica.com/science/nuclide.
[7] KONDEV F G, WANG M, HUANG W J, et al. Chin Phys C, 2021, 45(3): 030001.
[8] Compelling Research Opportunities using Isotopes[EB/OL]. [2023-01-20]. https://www.osti.gov/biblio/958307.
[9] PFENNIG G. Number 23420 Karlsruher Nuklidkarte: Commemoration of the 50th Anniversary(1958-2008)[M]. Luxembourg: Office for the Official Publications of the European Communities, 2008.
[10] BUDRIKIS Z. Interactions: Ed Simpson and the 3d Nuclide Chart [EB/OL]. [2023-01-18].https://blogs.nature.com/onyourwavelength/2019/08/21/interactions-ed-simpson-and-the-3d-nuclide-chart/.
[11] VOCKE R D. Pure and Applied Chemistry, 1999, 71(8): 1593.
[12] BERGLUND M, WIESER M E. Pure and Applied Chemistry, 2011, 83(2): 397. doi:  10.1351/PAC-REP-10-06-02
[13] MEIJA J, COPLEN T B, BERGLUND M, et al. Pure and Applied Chemistry, 2016, 88(3): 293. doi:  10.1515/pac-2015-0503
[14] 李琦, 杨玥. 全球放射性医用同位素生产与需求现状分析 [C]//中国核科学技术进展报告(第七卷). 北京: 中国原子能出版社, 2021: 22.

LI Qi, YANG Yue. Current Status of Global Medical Radioisotope Production and Demand[C]//China Nuclear Science and Technology Progress Report (Vol. 7). Beijing: China Atomic Energy Press, 2021: 22. (in Chinese)
[15] SÓTI Z, MAGILL J, DREHER R, et al. The New Edition of the Karlsruhe Nuclide Chart in Summer 2015[C]//Proceedings of the International Conference Nuclear Energy for New Europe. Portorož, Slovenia, 2015.
[16] WANG M, HUANG W J, KONDEV F G, et al. Chin Phys C, 2021, 45(3): 030003.
[17] FIRESTONE R B, BAGLIN C M. Table of Isotopes[M]. 8th ed. Weinheim: Wiley-VCH, 1999.
[18] Nuclide Navigator Pro Interactive Chart of the Nuclide[EB/OL].[2023-01-20].https://www.ortec-online.com.cn/products/application-software/nuclide-navigator.
[19] SOTI Z, MAGILL J, DREHER R. EPJ Nuclear Sciences & Technologies, 2019, 5: 6. doi:  10.1051/epjn/2019004
[20] NUCLEAR DATA CENTER J A E A. Jaea Chart of the Nuclides [EB/OL]. [2023-01-18]. https://www.ndc.jaea.go.jp/CN18_E/jcnq.html.
[21] WANG N, LIU M, WU X, et al. Phys Lett B, 2014, 734: 215.
[22] WP Library. Karlsruhe Nuclide Wall Chart[M]. 11th ed. Karlsruhe: Nucleonica GmbH, 2022.
[23] KOURA H, KATAKURA J, TACHIBANA T, et al. www chart of the nuclides 2014[EB/OL]. [2023-01-18]. https://www.ndc.jaea.go.jp/CN14/index.html.
[24] Bechtel Chart of the Nuclides[EB/OL].[2023-01-18]. https://www.nuclidechart.com/xcart/home.php.
[25] ANTONY P, SELTZ R. Nuclear Physics News, 2022, 32(3): 35.
[26] 核素图表编制组. 核素图[M]. 北京: 原子能出版社, 1976.

Editing Group of the Chart of Nuclides. Chart of the Nuclides[M]. Beijing: Atomic Energy Press, 1976. (in Chinese)
[27] 戴光曦, 刘国兴, 杨春详, 等. 核素图册[M]. 重庆: 科学技术文献出版社重庆分社, 1987.

DAI Guangxi, LIU Guoxing, YANG Chunxiang et al. Chart of nuclides (booklet), Chongqing: Chongqing Branch, Science and Technology Academic Press, 1987. (in Chinese)
[28] 戴光曦, 刘国兴, 赵正之, 等. 原子核物理评论, 2003, 20(Suppl): 5.

DAI Guangxi, LIU Guoxing, ZHAO Zhengzhi, et al. Nuclear Physics Review, 2003, 20(Suppl): 5. (in Chinese)
[29] GOLASHVILI T, KUPRIYANOV V, LBOV A, et al. Journal of Nuclear Science and Technology, 2002, 39(S2): 1484.
[30] 黄小龙, 吴振东, 葛智刚, 等. 简明核素图[M]. 北京: 中国原子能出版社, 2013.

HUANG Xiaolong, WU Zhendong, GE Zhigang, et al. Atlas of Chart Nuclides[M]. Beijing: China Atomic Energy Press, 2013 (in Chinese))
[31] IAEA Isotope Browser App Now Available in Multiple Languages[EB/OL].[2023-01-11]. https://www.iaea.org/newscenter/news/iaea-isotope-browser-app-now-available-in-multiple-languages.
[32] DIACONU G, POTET B, BOUVOT F, et al. Nucleus-win: A Driver Program for Nuclear Data Visualization[EB/OL]. [2023-01-11]. https://amdc.impcas.ac.cn/web/nubdisp_en.html.
[33] HENSLEY W. Chart of the Nuclides++[EB/OL]. [2023-01-11]. https://play.google.com/store/apps/details?id=com.nuclides.pp.mobile&gl=US.
[34] LABORATORY K A P. Chart of the Nuclides[EB/OL]. [2023-01-11]. https://apps.apple.com/in/app/chart-of-the-nuclides/id1529624218.
[35] NuDat 3[EB/OL]. [2023-01-11]. https://www.nndc.bnl.gov/nudat3/.
[36] AGENCY I A E. Iaea Isotope Browser App Now Available in Multiple Languages[EB/OL]. [2023-01-11]. https://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html.
[37] INSTITUTE K A E R. Table of Nuclides[EB/OL]. [2023-01-11]. https://atom.kaeri.re.kr/nuchart/.
[38] SIMPSON E. Colorful Nuclide Chart[EB/OL]. [2023-01-11]. https://people.physics.anu.edu.au/~ecs103/chart/.
[39] Karlsruhe Nuclide Chart (knco++)[EB/OL]. [2023-01-11].https://nucleonica.com/.
[40] LABORATORY K A P. 17th Edition of the Chart of the Nuclides [EB/OL]. [2023-01-11]. https://nnlchartofthenuclides.com/nuclide.
[41] Chart Of Nuclide[EB/OL]. [2023-01-11]. http://www.nuclear.csdb.cn/texing.html.
[42] 葛智刚, 陈永静. 原子核物理评论, 2020, 37(3): 309. doi:  10.11804/NuclPhysRev.37.2019CNPC42

GE Zhigang, CHEN Yongjing. Nuclear Physics Review, 2020, 37(3): 309. (in Chinese) doi:  10.11804/NuclPhysRev.37.2019CNPC42
[43] SOPPERA N, BOSSANT M, CABELLOS O, et al. EPJ Web of Conferences, 2017, 146: 07006. doi:  10.1051/epjconf/201714607006
[44] THOENNESSEN M. The Discovery Method of Isotopes[EB/OL]. [2023-01-11]. https://people.nscl.msu.edu/~thoennes/isotopes/nuclide-references.html.
[45] HUANG W J, WANG M, KONDEV F G, et al. Chin Phys C, 2021, 45(3): 030002. doi:  10.1088/1674-1137/abddb0
[46] Evaluated Nuclear Structure Data File (ensdf), Online Data Services [EB/OL]. [2023-01-11]. https://www.nndc.bnl.gov/ensdf/.
[47] Jendl Japanese Evaluated Nuclear Data Library[EB/OL]. https://wwwndc.jaea.go.jp/jendl/jendl.html.
[48] Chinese Evaluated Nuclear Data Library-3.2 (CENDL-3.2)[EB/OL]. [2023-01-20]. http://www.nuclear.csdb.cn/cendl32.htm.
[49] RUMBLE J R. CRC Handbook of Chemistry and Physics [EB/OL]. [2023-01-11]. https://hbcp.chemnetbase.com/faces/contents/ContentsSearch.xhtml.
[50] ENGLAND T, RIDER B. Evaluation and Compilation of Fission Product Yields 1993: LA-SUB–94-170, 10103145[R]. Washington D C: U.S. Department of Energy Office of Scientific and Technical Information, 1995.
[51] PRITYCHENKO B, BĚTÁK E, KELLETT M A, et al. Nucl Instr and Meth A, 2011, 640(1): 213. doi:  10.1016/j.nima.2011.03.018
[52] Joint Evaluated Fission and Fusion (jeff) Nuclear Data Library[EB/OL]. [2023-01-11]. https://www.oecd-nea.org/dbdata/jeff/.
[53] Isotopes (all known) of the Elements[EB/OL].[2023-01-11]. https://periodictable.com/Properties/A/KnownIsotopes.html.
[54] Ekström. Periodic Table Linked to Tori Data of Known Isotopes for Each Element[EB/OL].[2023-01-11].http://nucleardata.nuclear.lu.se/toi/perchart.htm.
[55] Radiation Safety Information Computational Center[EB/OL]. [2023-01-11]. https://rsicc.ornl.gov/Default.aspx.
[56] TANIUCHI R, SANTAMARIA C, DOORNENBAL P, et al. Nature, 2019, 569(7754): 53. doi:  10.1038/s41586-019-1155-x
[57] Hartree-fock-bogoliubov Results Based on the Gogny Force[EB/OL]. [2023-01-11]. https://www-phynu.cea.fr/science_en_ligne/carte_potentiels_microscopiques/carte_potentiel_nucleaire_eng.htm.
[58] 李弘伟. 78As 的激发态研究与原子核高自旋态核素图的建立 [D]. 威海: 山东大学, 2021.

LI Hongwei. Study on the Excited States in 78As and the Establishment of the Nuclear High Spin States Chart[D]. Weihai: Shandong University, 2021. (in Chinese)
[59] SIMPSON E C. J Phys: Conf Ser, 2020, 1643(1): 012168.
[60] SIMPSON E C, SHELLEY M. Phys Educ, 2017, 52(6): 064002. doi:  10.1088/1361-6552/aa811a
[61] SIMPSON E. Colourful Nuclide Chart : Double Mass Differences[EB/OL]. [2023-01-11]. https://people.physics.anu.edu.au/~ecs103/chart/.
[62] MAGILL J, DREHER R, SÓTI Z. Karlsruhe Nuclide Auditorium Chart[M]. 11th ed. Karlsruhe: Nucleonica GmbH, 2022.
[63] MAGILL J, DREHER R, SÓTI Z. Karlsruhe Nuclide Folding Chart[M]. 11th ed. Karlsruhe: Nucleonica GmbH, 2022.
[64] KOURA H. Physics Education, 2014, 49(2): 215.
[65] KOURA H. Icone23-1392 Outreach Activity by using Threedimensional Nuclear Chart: Understanding Nuclear Physics and Nuclear Energy[C]//The Proceedings of the International Conference on Nuclear Engineering (ICONE): 2015, Chiba, Japan, 2015: 23.
[66] MAYER M G. Phys Rev, 1948, 74(3): 235. doi:  10.1103/PhysRev.74.235
[67] NILSSON S G, TSANG C F, SOBICZEWSKI A, et al. Nuclear Physics A, 1969, 131(1): 1. doi:  10.1016/0375-9474(69)90809-4
[68] GIULIANI S A, MARTÍNEZ-PINEDO G, ROBLEDO L M. Phys Rev C, 2018, 97(3): 034323. .
[69] 全国科学技术名词审定委员会. 化学名词[M]. 2版. 北京: 科学出版社, 2016.

China National Committee for Terminology in Science and Technology. Chinese Term in Chemistry[M]. 2nd ed. Beijing: Science Press, 2016. (in Chinese)
[70] ERLER J, BIRGE N, KORTELAINEN M, et al. Nature, 2012, 486(7404): 509. doi:  10.1038/nature11188
[71] NEUFCOURT L, CAO Y, GIULIANI S A, et al. Phys Rev C, 2020, 101(4): 044307. doi:  10.1103/PhysRevC.101.044307
[72] BADALÀ A, LA COGNATA M, NANIA R, et al. Riv Nuovo Cim, 2022, 45(3): 189. doi:  10.1007/s40766-021-00028-5
[73] THOENNESSEN M. The Discovery of Isotopes[M]. Cham: Springer International Publishing, 2016.
[74] GORIELY S, CHAMEL N, PEARSON J M. Phys Rev C, 2013, 88: 024308. doi:  10.1103/PhysRevC.88.024308
[75] AFANASJEV A, AGBEMAVA S, RAY D, et al. Phys Lett B, 2013, 726(4-5): 680. doi:  10.1016/j.physletb.2013.09.017
[76] The Limits of the Nuclear Landscape Explored by the Relativistic Continuum Hartree–Bogoliubov Theory[EB/OL]. [2023-01-11]. https://www.sciencedirect.com/science/article/pii/S0092640X17300451.
[77] THOENNESSEN M. The Discovery Method of Isotopes: Movie [EB/OL]. [2023-01-11]. https://people.nscl.msu.edu/~thoennes/iso-topes/2022-Isotope-Movie.gif.
[78] THOENNESSEN M. Discovery of Nuclides Project[EB/OL]. [2023-01-11]. https://people.nscl.msu.edu/~thoennes/isotopes.
[79] THOENNESSEN M, SHERRILL B. Nature, 2011, 473(7345): 25. doi:  10.1038/473025a
[80] THOENNESSEN M. Pramana - J Phys, 2015, 85(3): 457. doi:  10.1007/s12043-015-1064-y
[81] OGANESSIAN Y T, UTYONKOV V K, LOBANOV Y V, et al. Phys Rev C, 2006, 74(4): 044602. doi:  10.1103/PhysRevC.74.044602
[82] THOENNESSEN M. Atomic Data and Nuclear Data Tables, 2013, 99(3): 312. doi:  10.1016/j.adt.2012.03.003
[83] MA C W, WEI H L, LIU X Q, et al. Progress in Particle and Nuclear Physics, 2021, 121: 103911. doi:  10.1016/j.ppnp.2021.103911
[84] U.S. Department of Energy, FOUNDATION N S. Reaching for the horizon: The 2015 Long Range Plan for Nuclear Science[R]. Washington D C: Nuclear Science Advisory Committee, 2015.
[85] Nupecc Long Range Plan 2017 Perspectives in Nuclear Physics[R]. Genève: Nuclear Physics European Collaboration Committee, 2017.
[86] 张钰海, 张根, 李静静, 等. 同位素, 2022, 35(2): 104. doi:  10.7538/tws.2022.35.02.0104

ZHANG Yuhai, ZHANG Gen, LI Jingjing, et al. Journal of Isotopes, 2022, 35(2): 104. (in Chinese) doi:  10.7538/tws.2022.35.02.0104
[87] LINDROOS M. Review of ISOL-type Radioactive Beam Facilities [EB/OL]. [2023-01-11]. https://cds.cern.ch/record/822760.
[88] SAVARD G, BRODEUR M, CLARK J A, et al. Nucl Instr and Meth B, 2020, 463: 258. doi:  10.1016/j.nimb.2019.05.024
[89] BLUMENFELD Y, NILSSON T, DUPPEN P V. Phys Scr, 2013, 2013(T152): 014023. doi:  10.1088/0031-8949/2013/T152/014023
[90] BLUMENFELD Y. Physics, 2022, 15: 177. doi:  10.1103/Physics.15.177
[91] ORGANIZATION F U. FRIB Opening New Frontiers in Nuclear Science[R]. State of Texas: Texas A&M University, 2014.
[92] WEI J, AO H, AREND B, et al. Mod Phys Lett A, 2022, 37(09): 2230006. doi:  10.1142/S0217732322300063
[93] NOJI S, ZEGERS R G T, BERG G P A, et al. Nucl Instr and Meth A, 2023, 1045: 167548. doi:  10.1016/j.nima.2022.167548
[94] SUMIKAMA T, KUBO T, FUKUDA N, et al. Nucl Instr and Meth B, 2020, 463: 237. doi:  10.1016/j.nimb.2019.05.030
[95] SAKAI H, HABA H, MORIMOTO K, et al. Eur Phys J A, 2022, 58(12): 238. doi:  10.1140/epja/s10050-022-00888-3
[96] ÄYSTÖ J, BEHR K H, BENLLIURE J, et al. Nucl Instr and Meth B, 2016, 376: 111. doi:  10.1016/j.nimb.2016.02.042
[97] HERLERT A. Hyperfine Interact, 2017, 238(1): 35. doi:  10.1007/s10751-017-1411-0
[98] YANG J C, XIA J W, XIAO G Q, et al. Nucl Instr and Meth B, 2013, 317: 263. doi:  10.1016/j.nimb.2013.08.046
[99] 赵红卫, 徐瑚珊, 肖国青, 等. 中国科学: 物理学 力学 天文学, 2020, 50(11): 112006. doi:  10.1360/SSPMA-2020-0248

ZHAO Hongwei, XU Hushan, XIAO Guoqing, et al. Sci Sin-Phys Mech Astron, 2020, 50(11): 112006. (in Chinese) doi:  10.1360/SSPMA-2020-0248
[100] 周小红. 原子核物理评论, 2018, 35(4): 339. doi:  10.11804/NuclPhysRev.35.04.339

ZHOU Xiaohong. Nuclear Physics Review, 2018, 35(4): 339. (in Chinese) doi:  10.11804/NuclPhysRev.35.04.339
[101] BALL G C, HACKMAN G, KRÜCKEN R. Phys Scr, 2016, 91(9): 093002.
[102] MUSTAPHA B, NOLEN J A, SAVARD G, et al. J Inst, 2017, 12(12): T12002. doi:  10.1088/1748-0221/12/12/T12002
[103] HENNING W.Nuclear Physics A, 2004, 734: 654.
[104] CATHERALL R, ANDREAZZA W, BREITENFELDT M, et al. J Phys G: Nucl Part Phys, 2017, 44(9): 094002.
[105] MOORE I D, ERONEN T, GORELOV D, et al. Nucl Instr and Meth B, 2013, 317: 208. doi:  10.1016/j.nimb.2013.06.036
[106] MAO L, YANG J, YANG W, et al. Journal of Instrumentation, 2020, 15(12): T12015. doi:  10.1088/1748-0221/15/12/T12015
[107] CHUNG Y, KIM H, KWON M. J Korean Phys Soc, 2022, 80(8): 693.
[108] BEDNYAKOV V A, RUSSAKOVICH N A. Phys Part Nuclei, 2018, 49(3): 331. doi:  10.1134/S1063779618030024
[109] NORMAND C, PFENNIG G, MAGILL J, et al. J Radioanal Nucl Chem, 2009, 282: 395. doi:  10.1007/s10967-009-0334-x
[110] NUCLEONICA. Karlsruhe Nuclide Chart[EB/OL].[2023-01-11]. https://www.nucleonica.com/wiki/index.php?title=Category:KNC.
[111] NUCLEONICA. First Edition of Karlsruhe Nuclide Chart, 1958 [EB/OL]. [2023-01-11]. https://www.nucleonica.com/wiki/index.php?title=File:KNC_1958.jpg.
[112] NUCLEONICA. 11th Edition of Karlsruhe Nuclide Chart, 2022 [EB/OL]. [2023-01-11]. https://www.nucleonica.com/wiki/index.php?title=File:KNC.png.
[113] MAGILL J Z S, DREHER R. Karlsruher Nuklidkarte, 10 ed, 2018[Z].
[114] NUCLEONICA. A Short History of Karlsruhe Nuclide Chart [EB/OL].[2023-01-11]. https://www.nucleonica.com/wiki/index.php?title=A_short_history_of_the_Karlsruhe_Nuclide_Chart_.
[115] MAGILL J, GALY J, DREHER R, et al. AIP Conference Proceedings, 2009, 1164: 100. doi:  10.1063/1.3224690
[116] MAGILL J, MAGILL N F. Nucleonica: A Platform for Organisational Knowledge Management in the Nuclear Domain[C]//ENC 2010, European Nuclear Conference, Barcelona, Spain, 2010.
[117] WAPSTRA A H, AUDI G, THIBAULT C. Nuclear Physics A, 2003, 729(1): 129. doi:  10.1016/j.nuclphysa.2003.11.002
[118] AUDI G, WANG M, WAPSTRA A H, et al. Nuclear Data Sheets, 2014, 120: 1. doi:  10.1016/j.nds.2014.06.126
[119] HUANG W, AUDI G, WANG M, et al. Chin Phys C, 2017, 41(3): 030002.
[120] BRUN R, RADEMAKERS F. Nucl Instr and Meth A, 1997, 389(1): 81. doi:  10.1016/S0168-9002(97)00048-X
[121] Draw freely | inkscape[EB/OL]. [2023-01-11]. https://inkscape.org/.
[122] MÖLLER P. EPJ Web Conf, 2016, 131: 03002. doi:  10.1051/epjconf/201613103002
[123] NAZAREWICZ W. Nature Physics, 2018, 14(6): 537. doi:  10.1038/s41567-018-0163-3
[124] GEISSEL H, LITVINOV Y A, PFEIFFER B, et al. AIP Conference Proceedings, 2006, 831: 108. doi:  10.1063/1.2200908
[125] SCHATZ H. International Journal of Mass Spectrometry, 2006, 251(2–3): 293. doi:  10.1016/j.ijms.2006.02.014
[126] NEIDHERR D, AUDI G, BECK D, et al. Phys Rev Lett, 2009, 102(11): 112501. doi:  10.1103/PhysRevLett.102.112501
[127] VAN SCHELT J, LASCAR D, SAVARD G, et al. Phys Rev C, 2012, 85(4): 045805. doi:  10.1103/PhysRevC.85.045805
[128] WU J, NISHIMURA S, LORUSSO G, et al. Phys Rev Lett, 2017, 118(7). doi:  10.1103/PhysRevLett.118.072701
[129] BERNAS M, CZAJKOWSKI S, ARMBRUSTER P, et al. Phys Lett B, 1994, 331(1): 19. doi:  10.1016/0370-2693(94)90937-7
[130] BERNAS M, ENGELMANN C, ARMBRUSTER P, et al. Phys Lett B, 1997, 415(2): 111. doi:  10.1016/S0370-2693(97)01216-1
[131] KURCEWICZ J, FARINON F, GEISSEL H, et al. Phys Lett B, 2012, 717(4–5): 371. doi:  10.1016/j.physletb.2012.09.021
[132] BLAUM K. Phys Rep, 2006, 425(1): 1. doi:  10.1016/j.physrep.2005.10.011
[133] LUNNEY D, PEARSON J M, THIBAULT C. Rev Mod Phys, 2003, 75(3): 1021. doi:  10.1103/RevModPhys.75.1021
[134] BOSCH F, LITVINOV Y A. International Journal of Mass Spectrometry, 2013, 349–350: 151. doi:  10.1016/j.ijms.2013.04.025
[135] YAMAGUCHI T, KOURA H, LITVINOV Y, et al. Progress in Particle and Nuclear Physics, 2021, 120: 103882. doi:  10.1016/j.ppnp.2021.103882
[136] ZHANG Y H, LITVINOV Y A, UESAKA T, et al. Phys Scripta, 2016, 91(7): 073002. doi:  10.1088/0031-8949/91/7/073002
[137] KLUGE H J. International Journal of Mass Spectrometry, 2013, 349–350: 26. doi:  10.1016/j.ijms.2013.04.017
[138] ERONEN T, KANKAINEN A, ÄYSTÖ J. Progress in Particle and Nuclear Physics, 2016, 91: 259. doi:  10.1016/j.ppnp.2016.08.001
[139] LUNNEY D. Hyperfine Interact, 2019, 240(1): 48. doi:  10.1007/s10751-019-1581-z
[140] PLASS W R, DICKEL T, SCHEIDENBERGER C. International Journal of Mass Spectrometry, 2013, 349–350: 134. doi:  10.1016/j.ijms.2013.06.005
[141] SCHURY P, ITO Y, ROSENBUSCH M, et al. International Journal of Mass Spectrometry, 2018, 433: 40. doi:  10.1016/j.ijms.2018.08.007
[142] FAMIANO M A. Int J Mod Phys E, 2019, 28(04): 1930005. doi:  10.1142/S0218301319300054
[143] FAMIANO M A, BOYD R N, KAJINO T, et al. J Phys G: Nucl Part Phys, 2008, 35(2): 025203.
[144] ARNOULD M, GORIELY S. Progress in Particle and Nuclear Physics, 2020, 112: 103766. doi:  10.1016/j.ppnp.2020.103766
[145] WALLERSTEIN G, IBEN I, PARKER P, et al. Rev Mod Phys, 1997, 69(4): 995. doi:  10.1103/RevModPhys.69.995
[146] 何建军, 郭冰, 柳卫平, 等. 科学通报, 2018, 63(24): 2429. doi:  10.1360/N972017-01368

HE Jianjun, GUO Bing, LIU Weiping, et al. Chin Sci Bull, 2018, 63(24): 2429. (in Chinese) doi:  10.1360/N972017-01368
[147] THIELEMANN F K, KRATZ K L, PFEIFFER B, et al. Nuclear Physics A, 1994, 570(1-2): 329. doi:  10.1016/0375-9474(94)90299-2
[148] DIEHL R, KORN A J, LEIBUNDGUT B, et al. Progress in Particle and Nuclear Physics, 2022, 127: 103983. doi:  10.1016/j.ppnp.2022.103983
[149] LODDERS K. Solar Elemental Abundances[M]. Oxford: Oxford University Press, 2020.
[150] BURBIDGE E, BURBIDGE G, FOWLER W, et al. Reviews of Modern Physics, 1957, 29(4): 547. doi:  10.1103/RevModPhys.29.547
[151] GORIELY S. The European Physical Journal A, 2015, 51(12). doi:  10.1140/epja/i2015-15172-2
[152] ABBOTT B P, ABBOTT R, ABBOTT T D, et al. Phys Rev Lett, 2017, 119(16): 161101. doi:  10.1103/PhysRevLett.119.161101
[153] PIEKAREWICZ J. Acta Phys Pol B, 2019, 50(3): 239. doi:  10.5506/APhysPolB.50.239
[154] LUNNEY D. 4open, 2020, 3: 14. doi:  10.1051/fopen/2020014
[155] CÔTÉ B, FRYER C L, BELCZYNSKI K, et al. ApJ, 2018, 855(2): 99. doi:  10.3847/1538-4357/aaad67
[156] TANIHATA I. Nucl Instr and Meth B, 2008, 266(19–20): 4067. doi:  10.1016/j.nimb.2008.05.088
[157] SAKURAI H. Front Phys, 2018, 13(6): 132111. doi:  10.1007/s11467-018-0849-0
[158] 何建军, 周小红, 张玉虎. 物理, 2013, 42(7): 484. doi:  10.7693/wl20130703

HE Jianjun, ZHOU Xiaohong, ZHANG Yuhu. Physics, 2013, 42(7): 484. (in Chinese) doi:  10.7693/wl20130703
[159] KAJINO T, AOKI W, BALANTEKIN A B, et al. Progress in Particle and Nuclear Physics, 2019, 107: 109. doi:  10.1016/j.ppnp.2019.02.008
[160] Connecting Quarks with the Cosmos: Eleven Science Questions for the New Century[M]. Washington D C: National Academies Press, 2003.
[161] COWAN J J, SNEDEN C, LAWLER J E, et al. Reviews of Modern Physics, 2021, 93: 015002. doi:  10.1103/RevModPhys.93.015002
[162] YANG X F, WANG S J, WILKINS S G, et al. Progress in Particle and Nuclear Physics, 2023, 129: 104005. doi:  10.1016/j.ppnp.2022.104005
[163] SOBICZEWSKI A, LITVINOV Y A. Phys Rev C, 2014, 89(2): 024311. doi:  10.1103/PhysRevC.89.024311
[164] SPYROU A. Physics, 2019, 12: 126. doi:  10.1103/Physics.12.126
[165] GRIGORENKO L V, MUKHA I, KOSTYLEVA D, et al. Phys Rev C, 2018, 98(6): 064309. doi:  10.1103/PhysRevC.98.064309
[166] 林承键, 徐新星, 孙立杰, 等. 科学通报, 2021, 66(27): 3527. doi:  10.1360/TB-2020-1679

LIN Chengjian, XU Xinxing, SUN Lijie, et al. Chin Sci Bull, 2021, 66(27): 3527. (in Chinese) doi:  10.1360/TB-2020-1679
[167] ZHANG Z Y, GAN Z G, YANG H B, et al. Phys Rev Lett, 2019, 122(19): 192503. doi:  10.1103/PhysRevLett.122.192503
[168] AHN D S, AMANO J, BABA H, et al. Phys Rev Lett, 2022, 129(21): 212502. doi:  10.1103/PhysRevLett.129.212502
[169] AHN D S, FUKUDA N, GEISSEL H, et al. Phys Rev Lett, 2019, 123(21): 212501. doi:  10.1103/PhysRevLett.123.212501
[170] STROBERG S R, HOLT J D, SCHWENK A, et al. Phys Rev Lett, 2021, 126(2): 022501. doi:  10.1103/PhysRevLett.126.022501
[171] TSUNODA N, OTSUKA T, TAKAYANAGI K, et al. Nature, 2020, 587(7832): 66. doi:  10.1038/s41586-020-2848-x
[172] OGANESSIAN Y T, SOBICZEWSKI A, TER-AKOPIAN G M. Phys Scr, 2017, 92(2): 023003. doi:  10.1088/1402-4896/aa53c1
[173] 周小红, 徐瑚珊. 物理, 2019, 48(10): 640. doi:  10.7693/wl20191003

ZHOU Xiaohong, XU Hushan. Physics, 2019, 48(10): 640. (in Chinese) doi:  10.7693/wl20191003
[174] HERZBERG R D, GREENLEES P T. Progress in Particle and Nuclear Physics, 2008, 61(2): 674. doi:  10.1016/j.ppnp.2008.05.003
[175] STEINEGGER P. Commun Chem, 2021, 4(1): 1. doi:  10.1038/s42004-021-00529-8
[176] 王艺澎, 张鸿飞, 马娜娜, 等. 原子核物理评论, 2022, 39(4): 434. doi:  10.11804/NuclPhysRev.39.2022046

WANG Yipeng, ZHANG Hongfei, MA Na'na, et al. Nuclear Physics Review, 2022, 39(4): 434. (in Chinese) doi:  10.11804/NuclPhysRev.39.2022046
[177] 王子涵, 陈鹏辉, 曾祥华, 等. 原子核物理评论, 2022, 39(4): 421. doi:  10.11804/NuclPhysRev.39.2022112

WANG Zihan, CHEN Penghui, ZENG Xianghua, et al. Nuclear Physics Review, 2022, 39(4): 421. (in Chinese) doi:  10.11804/NuclPhysRev.39.2022112
[178] 杨秀秀, 张根, 李静静, 等. 原子核物理评论, 2020, 37(2): 151. doi:  10.11804/NuclPhysRev.37.2020005

YANG Xiuxiu, ZHANG Gen, LI Jingjing, et al. Nuclear Physics Review, 2020, 37(2): 151. (in Chinese) doi:  10.11804/NuclPhysRev.37.2020005
[179] ZHU L, SU J, LI C, et al. Phys Lett B, 2022, 829: 137113. doi:  10.1016/j.physletb.2022.137113
[180] ADAMIAN G G, ANTONENKO N V. Eur Phys J A, 2022, 58(6): 1. doi:  10.1140/epja/s10050-022-00764-0
[181] 周善贵. 原子核物理评论, 2017, 34(3): 318. doi:  10.11804/NuclPhysRev.34.03.318

ZHOU Shangui. Nuclear Physics Review, 2017, 34(3): 318. (in Chinese) doi:  10.11804/NuclPhysRev.34.03.318
[182] 周善贵. 中国科技术语, 2017, 19(2): 35. doi:  10.3969/j.issn.1673-8578.2017.02.009

ZHOU Shangui. China Terminology, 2017, 19(2): 35. (in Chinese) doi:  10.3969/j.issn.1673-8578.2017.02.009
[183] HOLDEN N E, COPLEN T B, BÖHLKE J K, et al. Pure and Applied Chemistry, 2018, 90(12): 1833.
[184] Isotopes matter[EB/OL]. [2023-01-11]. https://www.isotopesmatter.com/.
[185] CENTER N N D. Sigma Periodic Table Browse: Evaluated Nuclear Data File (endf) Retrieval & Plotting[EB/OL]. [2023-01-11]. https://www.nndc.bnl.gov/sigma/index.jsp.
[186] XU S, ZHANG Z, GAN Z, et al. Nucl Instr and Meth A, 2023, 1050: 168113. doi:  10.1016/j.nima.2023.168113
[187] 周小红, 张志远, 甘再国, 等. 中国科学: 物理学 力学 天文学, 2020, 50(11): 112002. doi:  10.1360/SSPMA-2020-0288

ZHOU Xiaohong, ZHANG Zhiyuan, GAN Zaiguo, et al. Sci Sin-Phys Mech Astron, 2020, 50(11): 112002. (in Chinese) doi:  10.1360/SSPMA-2020-0288
[188] MUSEUM T D. Science Create Knowledge[EB/OL]. [2023-01-11]. https://www.deutsches-museum.de/en.
[189] MIERNIK K. Chart of Nuclides Drawer[EB/OL]. [2023-01-11]. https://github.com/kmiernik/Chart-of-nuclides-drawer.
[190] KARTHEIN J. Nuclear-chart-plotter[EB/OL]. [2023-01-11]. https://github.com/jonas-ka/nuclear-chart-plotter.