[1] 方守贤, 王乃彦, 何多慧. 中国科学院院刊, 2009, 24(6): 642. doi:  10.3969/j.issn.1000-3045.2009.06.014

FANG Shouxian, WANG Naiyan, HE Duohui. Bulletin of Chinese Academy of Sciences, 2009, 24(6): 642. (in Chinese) doi:  10.3969/j.issn.1000-3045.2009.06.014
[2] 詹文龙, 徐瑚珊. 中国科学院院刊, 2012, 27(3): 375. doi:  10.3969/j.issn.1000-3045.2012.03.017

ZHAN Wenlong, XU Hushan. Bulletin of Chinese Academy of Sciences, 2012, 27(3): 375. (in Chinese) doi:  10.3969/j.issn.1000-3045.2012.03.017
[3] 骆鹏, 王思成, 胡正国, 等. 物理, 2016, 45(9): 569. doi:  10.7693/wl20160903

LUO Peng, WANG Sicheng, HU Zhengguo, et al. Physics, 2016, 45(9): 569. (in Chinese) doi:  10.7693/wl20160903
[4] ZHAN Wenlong, YANG Lei. Science China-Technological Sciences, 2015, 58(10): 1705. doi:  10.1007/s11431-015-5894-0
[5] LU Daogang, YIN Tingru, LI Xudong, et al. Nuclear Engineering and Design, 2020, 363: 110626. doi:  10.1016/j.nucengdes.2020.110626
[6] 王梦柯. 颗粒流靶靶体几何对流动性影响的研究[D]. 兰州: 中国科学院近代物理研究所, 2020.

WANG Mengke. Research on the Effect of Particle Flow Target Geometry on Fluidity[D]. LanZhou: Institute of Modern Physics, Chinese Academy of Sciences, 2020. (in Chinese)
[7] ZHANG Lu, YANG Yongwei, GAO Yucui. Physical Analysis of LBE Spallation Target Coupled with the Reactor for CiADS[M]. New York: Amer Soc Mechanical Engineers, 2014.
[8] CHEN Zhong, ZHAO Zijia, PAN Dongmei, et al. Progress in Nuclear Energy, 2016, 91: 217. doi:  10.1016/j.pnucene.2016.02.002
[9] LIU Jie, FAN Junhui, ZHANG Jian, et al. Applied Thermal Engineering, 2016, 106: 244. doi:  10.1016/j.applthermaleng.2016.06.006
[10] 朱庆福, 赵善桂, 宁通. 原子能科学技术, 2018, 52(1): 101. doi:  10.1360/csb1992-37-5-470

ZHU Qingfu, ZHAO Shangui, NING Tong. Atomic Energy Science and Technology, 2018, 52(1): 101. (in Chinese) doi:  10.1360/csb1992-37-5-470
[11] 赵学超. 加速器驱动的次临界熔盐嬗变堆的物理特性研究[D]. 上海: 中国科学院上海应用物理研究所, 2019.

ZHAO Xuechao. Physical Properties of Accelerator-Driven Subcritical Molten Salt Transmutation Reactor[D]. Shanghai: Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019. (in Chinese)
[12] 杨璞. 钍基次临界氯盐堆概念设计[D]. 上海: 中国科学院上海应用物理研究所, 2020.

YANG Pu. Conceptual Design of Thorium-Based Subcritical Chlorine Salt Reactor[D]. Shanghai: Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2020. (in Chinese)
[13] CHENG X, CAHALAN J E, FINCK P J. Nuclear Engineering and Design, 2004, 229(2): 289. doi:  10.1016/j.nucengdes.2004.01.003
[14] 曾梅花. 加速器驱动铅基堆堆内换料系统结构分析与仿真[D]. 北京: 中国科学技术大学, 2018.

ZENG Meihua. Structural Analysis and Simulation of Accelerator-Driven Lead-Based Reactor Refueling System[D]. Beijing: University of Science and Technology of China, 2018. (in Chinese)
[15] 张晗. 铅铋反应堆燃料组件湍流换热计算[D]. 北京: 华北电力大学, 2018.

ZHANG Han. Calculation of Turbulent Heat Transfer in Lead-bismuth Reactor Fuel Assembly[D]. Beijing: North China Electric Power University, 2018. (in Chinese)
[16] 陶科伟, 刘伟明, 张建荣, 等. 西北师范大学学报(自然科学版), 2017, 53(4): 51. doi:  10.16783/j.cnki.nwnuz.2017.04.012

TAO Kewei, LIU Weiming, ZHANG Jianrong, et al. Journal of Northwest Normal University (Natural Science Edition), 2017, 53(4): 51. (in Chinese) doi:  10.16783/j.cnki.nwnuz.2017.04.012
[17] 封坤, 吕霞云, 张璐, 等. 南方能源建设, 2020, 7(1): 76. doi:  10.16516/j.gedi.issn2095-8676.2020.01.012

FENG Kun, LV Xiayun, ZHANG Lu, et al. Southern Energy Construction, 2020, 7(1): 76. (in Chinese) doi:  10.16516/j.gedi.issn2095-8676.2020.01.012
[18] 马腾跃, 杨宁, 张信一, 等. 原子能科学技术, 2015, 49(4): 604. doi:  10.7538/yzk.2015.49.04.0604

MA Tenyue, YANG Ning, ZHANG Xinyi, et al. Atomic Energy Science and Technology, 2015, 49(4): 604. (in Chinese) doi:  10.7538/yzk.2015.49.04.0604
[19] WU Yican. International Journal of Energy Research, 2016, 40(14): 1951. doi:  10.1002/er.3569
[20] WU Yican, BAI Yunqing, SONG Yong, et al. Nuclear Science and Engineering, 2014, 34(2): 201.
[21] 文俊, 彭天骥, 范旭凯, 等. 核技术, 2020, 43(07): 67. doi:  10.11889/j.0253-3219.2020.hjs.43.070601

WEN Jun, PENG Tianji, FAN Xvkai, et al. Nuclear Techniques, 2020, 43(07): 67. (in Chinese) doi:  10.11889/j.0253-3219.2020.hjs.43.070601
[22] GOHAR Y, FINCK P, HANSON A, et al. Lead-bismuth Spallation Target Design of the Accelerator-driven Test Facility (ADTF)[C]//3rd Workshop on Utilisation and Reliability of High Power Proton Accelerators, 2002: 373.
[23] 何西扣, 朱衍勇, 万发荣, 等. 物理测试, 2011, 29(03): 25. doi:  10.13228/j.boyuan.issn1001-0777.2011.03.007

HE Xikou, ZHU Yanyong, WAN Farong, et al. Physical Examination and Testing, 2011, 29(03): 25. (in Chinese) doi:  10.13228/j.boyuan.issn1001-0777.2011.03.007
[24] OECD/NEA. Handbook on Lead-bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermalhydraulics and Technologies[M]. Vienna: OECD, 2007: 29.
[25] Cheng XU, NAMLI T. Nuclear Engineering and Design, 2006, 236(4): 385. doi:  10.1016/j.nucengdes.2005.09.006
[26] CUNNINGTON G R, TIEN C L. A Study of Heat-transfer Processes in Multilayer Insulations[C]//4th Thermophysics Conference June 16-18, 1969, San Francisco, CA, USA, 1969.
[27] 杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006.

YANG Shiming, TAO Wengquan. Heat Transfer[M]. 4th ed. Beijing: Higher Education Press, 2006. (in Chinese)
[28] GEORGE S. Heat Transfer in Rarefied Gases[M]. Amsterdam: Elsevier, 1971: 163.
[29] 张瑞宏. 真空平板玻璃传热性能及支撑应力研究[D]. 北京: 中国农业大学, 2005.

ZHANG Ruihong. Research on Heat Transfer Performance and Supporting Stress of Vacuum Flat Glass[D]. Beijing: China Agricultural University, 2005. (in Chinese)
[30] 缪宏, 张瑞宏, 高建和, 等. 玻璃, 2007, 34(2): 7. doi:  10.3969/j.issn.1003-1987.2007.02.002

MIAO Hong, ZHANG Ruihong, GAO Jianhe, et al. Glass, 2007, 34(2): 7. (in Chinese) doi:  10.3969/j.issn.1003-1987.2007.02.002
[31] 王鑫, 陈叔平, 朱鸣, 等. 低温与超导, 2021, 49(12): 6. doi:  10.16711/j.1001-7100.2021.12.001

WANG Xin, CHEN Shuping, ZHU Ming, et al. Cryogenics and Superconductivity, 2021, 49(12): 6. (in Chinese) doi:  10.16711/j.1001-7100.2021.12.001