[1] CHEN S. Nucl Instr and Meth B, 2021, 508: 41. doi:  10.1016/j.nimb.2021.10.007
[2] KINCHIN G H, PEASE R S. Reports on Progress in Physics, 1955, 18: 1. doi:  10.1088/0034-4885/18/1/301
[3] SIGMUND P. Applied Physics Letters, 1969, 14(3): 114. doi:  10.1063/1.1652730
[4] SIGMUND P. Radiation Effects, 1969, 1(1): 15. doi:  10.1080/00337576908234453
[5] ROBINSON M T, TORRENS I M. Physical Review B, 1974, 9(12): 5008. doi:  10.1103/PhysRevB.9.5008
[6] NORGETT M J, ROBINSON M T, TORRENS I M. Nuclear Engineering and Design, 1975, 33(1): 50. doi:  10.1016/0029-5493(75)90035-7
[7] LINDHARD J, NIELSEN V, SCHARFF M, et al. Matematisk-Fysiske Meddelelser Konglige Danske Videnskabernes Selskab, 1963, 33(10): 1.
[8] ROBINSON M T. The Energy Dependence of Neutron Radiation Damage in Solids[C]//Nuclear Fusion Reactors. London: British Nuclear Energy Society, 1970: 364.
[9] CHEN S. Nucl Instr and Meth B, 2023, 536: 104. doi:  10.1016/j.nimb.2023.01.007
[10] AVERBACK R S, BENEDEK R, MERKLE K L. Physical Review B, 1978, 18(8): 4156. doi:  10.1103/PhysRevB.18.4156
[11] NORDLUND K, SAND A E, GRANBERG F, et al. Primary Radiation Damage in Materials: NEA/NSC/DOC(2015)9[R]. Paris: OECD/NEA, 2015.
[12] STOLLER R E, GREENWOOD L R. Journal of Nuclear Materials, 1999, 271-272: 57. doi:  10.1016/S0022-3115(98)00730-2
[13] STOLLER R E. 1.13 - Radiation Damage Correlation[M]. 2nd ed. //KONINGS R J M, STOLLER R E. Comprehensive Nuclear Materials. Oxford: Elsevier, 2020: 456.
[14] NORDLUND K, ZINKLE S J, SAND A E, et al. Nature Communications, 2018, 9: 1084. doi:  10.1038/s41467-018-03415-5
[15] KONOBEYEV A Y, FISCHER U, KOROVIN Y A, et al. Nuclear Energy and Technology, 2017, 3(3): 169. doi:  10.1016/j.nucet.2017.08.007
[16] CHEN S. Journal of Nuclear Materials, 2022, 568: 153883. doi:  10.1016/j.jnucmat.2022.153883
[17] CHEN S, BERNARD D, TOMMASI J, et al. EPJ Web of Conferences, 2020, 239: 08003. doi:  10.1051/epjconf/202023908003
[18] IWAMOTO Y, YOSHIDA M, MATSUDA H, et al. Materials Science Forum, 2021, 1024: 95. doi:  10.4028/www.scientific.net/MSF.1024.95
[19] KONOBEYEV A Yu, FISCHER U, SIMAKOV S P. Nucl Instr and Meth B, 2018, 431: 55. doi:  10.1016/j.nimb.2018.06.021
[20] NORDLUND K, ZINKLE S J, SAND A E, et al. Journal of Nuclear Materials, 2018, 512: 450. doi:  10.1016/j.jnucmat.2018.10.027
[21] CHEN S, BERNARD D. Nucl Instr and Meth B, 2020, 467: 58. doi:  10.1016/j.nimb.2020.01.017
[22] YANG Q, OLSSON P. Physical Review Materials, 2021, 5(7): 073602. doi:  10.1103/PhysRevMaterials.5.073602
[23] CHEN S L. Nuclear Science and Techniques, 2021, 32: 119. doi:  10.1007/s41365-021-00971-2
[24] INGUIMBERT C. Journal of Nuclear Materials, 2022, 559: 153398. doi:  10.1016/j.jnucmat.2021.153398
[25] CHEN S, BERNARD D, DE SAINT JEAN C. Nucl Instr and Meth B, 2019, 447: 8. doi:  10.1016/j.nimb.2019.03.035
[26] CHEN S, CAI D, BERNARD D, et al. Nucl Instr and Meth B, 2023, 535: 137. doi:  10.1016/j.nimb.2022.12.007
[27] CHEN S, BERNARD D, TAMAGNO L, et al. Nuclear Materials and Energy, 2021, 28: 101017. doi:  10.1016/j.nme.2021.101017
[28] CHEN S. Improved Models for Predicting Irradiation Damage with Uncertainty Estimates from Nuclear Reactions[D]. Grenoble: Université Grenoble Alpes, 2020.
[29] SUBLET J Ch, BONDARENKO I P, BONNY G, et al. The European Physical Journal Plus, 2019, 134(7): 350. doi:  10.1140/epjp/i2019-12758-y
[30] CHEN S, BERNARD D, BUIRON L. Nuclear Engineering and Design, 2019, 346: 85. doi:  10.1016/j.nucengdes.2019.03.006
[31] CHEN S, BERNARD D, BUIRON L. Nuclear Engineering and Design, 2023, 403: 112154. doi:  10.1016/j.nucengdes.2023.112154
[32] BERNARD D. Estimation of Bias and Uncertainties for Radiation Damage Calculation (Fission Reactors): INDC(NDS)-0719[R]. Vienna: IAEA INDC International Nuclear Data Committee, 2016: 25.
[33] CHEN S, TAMAGNO P, BERNARD D, et al. Results in Physics, 2020, 17: 103023. doi:  10.1016/j.rinp.2020.103023
[34] CHEN S, BERNARD D, TAMAGNO P, et al. Nucl Instr and Meth B, 2019, 456: 120. doi:  10.1016/j.nimb.2019.07.011
[35] CHEN S, BERNARD D. Journal of Nuclear Materials, 2019, 522: 236. doi:  10.1016/j.jnucmat.2019.05.020
[36] CHEN S, BERNARD D, DE SAINT JEAN C. EPJ Web of Conferences, 2020, 239: 08004. doi:  10.1051/epjconf/202023908004
[37] PLOMPEN A J M, CABELLOS O, DE SAINT JEAN C, et al. The European Physical Journal A, 2020, 56: 181. doi:  10.1140/epja/s10050-020-00141-9
[38] KONOBEYEV Y V, FISCHER U, PERESLAVTSEV P E, et al. IAEA DPA Cross Section[EB/OL]. [2022-06-10]. https://www-nds.iaea.org/public/download-endf/DXS/.
[39] KONOBEYEV A Y, FISCHER U, SIMAKOV S P. Nuclear Engineering and Technology, 2019, 51(1): 170. doi:  10.1016/j.net.2018.09.001
[40] MACFARLANE R E, MUIR D W, MANN F M. Journal of Nuclear Materials, 1984, 123(1-3): 1041. doi:  10.1016/0022-3115(84)90216-2
[41] MACFARLANE R E, KAHLER A C. Nuclear Data Sheets, 2010, 111(12): 2739. doi:  10.1016/j.nds.2010.11.001
[42] CHEN S. Nucl Instr and Meth B, 2022, 513: 1. doi:  10.1016/j.nimb.2021.12.013
[43] CHEN S, BERNARD D. Journal of Nuclear Materials, 2022, 562: 153610. doi:  10.1016/j.jnucmat.2022.153610
[44] GREENWOOD L R, SMITHER R K. SPECTER: Neutron Damage Calculations for Materials Irradiations: ANL/FPP/TM-197[R]. Chicago: Argonne National Laboratory, 1985.
[45] LUNÉVILLE L, SIMEONE D, JOUANNE C. Journal of Nuclear Materials, 2006, 353(1-2): 89. doi:  10.1016/j.jnucmat.2006.03.006
[46] GILBERT M R, SUBLET J C. Journal of Nuclear Materials, 2018, 504: 101. doi:  10.1016/j.jnucmat.2018.03.032
[47] WANG K, LI Z, SHE D, et al. Annals of Nuclear Energy, 2015, 82: 121. doi:  10.1016/j.anucene.2014.08.048
[48] 刘仕倡, 吴宇轩, 陈义学, 等. 原子能科学技术, 2020, 54(8): 1448. doi:  10.7538/yzk.2019.youxian.0703

LIU S, WU X, CHEN X, et al. Atomic Energy Science and Technology, 2020, 54(8): 1448. (in Chinese) doi:  10.7538/yzk.2019.youxian.0703
[49] X-5 MONTE CARLO TEAM. MCNP — A General Monte Carlo N-Particle Transport Code, Version 5: LA-UR-03-1987[R]. Los Alamos: Los Alamos National Laboratory, 2003.
[50] BRUN E, DAMIAN F, DIOP C M, et al. Annals of Nuclear Energy, 2015, 82: 151. doi:  10.1016/j.anucene.2014.07.053
[51] IWAMOTO Y, IWAMOTO H, HARADA M, et al. Journal of Nuclear Science and Technology, 2014, 51(1): 98. doi:  10.1080/00223131.2013.851042
[52] SATO T, IWAMOTO Y, HASHIMOTO S, et al. Journal of Nuclear Science and Technology, 2018, 55(6): 684. doi:  10.1080/00223131.2017.1419890
[53] ROMANO P K, HORELIK N E, HERMAN B R, et al. Annals of Nuclear Energy, 2015, 82: 90. doi:  10.1016/j.anucene.2014.07.048
[54] CHEN S, BERNARD D. Chinese Journal of Physics, 2020, 66: 135. doi:  10.1016/j.cjph.2020.04.025
[55] BROWN D A, CHADWICK M B, CAPOTE R, et al. Nuclear Data Sheets, 2018, 148: 1. doi:  10.1016/j.nds.2018.02.001
[56] CHEN S, PENELIAU Y, BERNARD D. Fusion Engineering and Design, 2021, 171: 112594. doi:  10.1016/j.fusengdes.2021.112594
[57] BROEDERS C H M, KONOBEYEV A Y, VOUKELATOU K. IOTA-a Code to Study Ion Transport and Radiation Damage in Composite Materials: FZKA-6984[R]. Karlsruhe, Germany: Karlsruhe Institute of Technology (KIT), 2004: 92.
[58] SIMEONE D, COSTANTINI J M, LUNEVILLE L, et al. Journal of Materials Research, 2015, 30(9): 1495. doi:  10.1557/jmr.2015.77
[59] CROSS SECTIONS EVALUATION WORKING GROUP. ENDF-6 Formats Manual-Data Formats and Procedures for the Evaluated Nuclear Data File ENDF/B-VI and ENDF/B-VII: BNL-90365-2009[R]. Suffolk County: National Nuclear Data Center, Brookhaven National Laboratory, 2010.
[60] KONOBEYEV A Y, FISCHER U, PERESLAVTSEV P E. Kerntechnik, 2015, 80(1): 7. doi:  10.3139/124.110483
[61] KOREPANOVA N, GU L. IMP & HIRFL Annual Report, 2018(1): 216.
[62] KOREPANOVA N, GU L, ZHANG L, et al. Annals of Nuclear Energy, 2019, 133: 937. doi:  10.1016/j.anucene.2019.07.035
[63] CHEN S, CAI B, YUAN C, et al. Nuclear Materials and Energy, 2022, 32: 101216. doi:  10.1016/j.nme.2022.101216
[64] ZINKLE S J, TERRANI K A, GEHIN J C, et al. Journal of Nuclear Materials, 2014, 448(1): 374. doi:  10.1016/j.jnucmat.2013.12.005
[65] TERRANI K A, ZINKLE S J, SNEAD L L. Journal of Nuclear Materials, 2014, 448(1): 420. doi:  10.1016/j.jnucmat.2013.06.041
[66] CHEN S, YUAN C. Science and Technology of Nuclear Installations, 2017, 2017: 3146985. doi:  10.1155/2017/3146985
[67] CHEN S L, HE X J, YUAN C X. Nuclear Science and Techniques, 2020, 31: 32. doi:  10.1007/s41365-020-0741-9
[68] Hatch Unit Restarts with Accident-tolerant Fuel[EB]. [2022-06-10]. http://www.world-nuclear-news.org/UF-Hatch-unit-restarts-with-accident-tolerant-fuel-0703184.html.
[69] ROBERTS J T A, SMITH E, FUHRMAN N, et al. Nuclear Technology, 1977, 35(1): 131. doi:  10.13182/NT77-A31856
[70] 赵秋娟, 吴海成, 吴小飞, 等. 原子能科学技术, 2017, 51(9): 1557. doi:  10.7538/yzk.2017.51.09.1557

ZHAO Q, WU H, WU X, et al. Atomic Energy Science and Technology, 2017, 51(9): 1557. (in Chinese) doi:  10.7538/yzk.2017.51.09.1557
[71] ZU T, XU J, TANG Y, et al. Annals of Nuclear Energy, 2019, 123: 153. doi:  10.1016/j.anucene.2018.09.016
[72] YIN W, ZU T, CAO L, et al. Annals of Nuclear Energy, 2020, 144: 107544. doi:  10.1016/j.anucene.2020.107544
[73] SAHA U, DEVAN K, BACHCHAN A, et al. Pramana-Journal of Physics, 2018, 90: 46. doi:  10.1007/s12043-018-1536-y
[74] ARCHIER P, DE SAINT JEAN C, LITAIZE O, et al. Nuclear Data Sheets, 2014, 118: 488. doi:  10.1016/j.nds.2014.04.114
[75] DE SAINT JEAN C, TAMAGNO P, ARCHIER P, et al. EPJ Nuclear Sciences & Technologies, 2021, 7: 10. doi:  10.1051/epjn/2021011
[76] MACFARLANE R E, MUIR D W, BOICOURT R M, et al. The NJOY Nuclear Data Processing System, Version 2016: LA-UR-17-20093[R]. Los Alamos: Los Alamos National Laboratory (LANL), 2016.
[77] CONLIN J L, KAHLER A C, MCCARTNEY A P, et al. EPJ Web of Conferences, 2017, 146: 09040. doi:  10.1051/epjconf/201714609040
[78] NJOY21—NJOY for the 21st Century[EB]. [2022-06-10]. https://www.njoy21.io/NJOY21/.
[79] ASTM E521-96. Practice for Neutron Radiation Damage Simulation by Charged-Particle Irradiation[R]. West Conshohocken, PA: ASTM International, 1996.
[80] BROEDERS C H M, KONOBEYEV A Y. Journal of Nuclear Materials, 2004, 328(2): 197. doi:  10.1016/j.jnucmat.2004.05.002
[81] YE T, YAO H, WU Y, et al. Journal of Nuclear Materials, 2021, 549: 152909. doi:  10.1016/j.jnucmat.2021.152909
[82] CHEN S, YUAN C, GUO D. Annals of Nuclear Energy, 2019, 124: 460. doi:  10.1016/j.anucene.2018.10.025
[83] FIELD K G, BRIGGS S A, SRIDHARAN K, et al. Journal of Nuclear Materials, 2017, 489: 118. doi:  10.1016/j.jnucmat.2017.03.038
[84] ZHANG C, CHEN G. Annals of Nuclear Energy, 2018, 111: 702. doi:  10.1016/j.anucene.2017.09.044
[85] ZHANG C, CHEN G. Annals of Nuclear Energy, 2018, 120: 707. doi:  10.1016/j.anucene.2018.06.042
[86] US Nuclear Regulatory Commission, Office of Nuclear, Regulatory Research. Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence: Draft Regulatory Guide DG-1025[R]. Washington: Nuclear Regulatory Commission, 1993.
[87] Nuclear Energy Agency(NEA). Computing Radiation Dose to Reactor Pressure Vessel and Internals: NEA/NSC/DOC(96)5[R]. Paris: OECD/NEA , 1996.
[88] CHEN S, BERNARD D. Nuclear Engineering and Design, 2019, 353: 110205. doi:  10.1016/j.nucengdes.2019.110205
[89] CHEN S, BERNARD D, BLAISE P. Annals of Nuclear Energy, 2020, 145: 107601. doi:  10.1016/j.anucene.2020.107601
[90] ZIEGLER J F, ZIEGLER M D, BIERSACK J P. Nucl Instr and Meth B, 2010, 268(11): 1818. doi:  10.1016/j.nimb.2010.02.091
[91] BORSCHEL C, RONNING C. Nucl Instr and Meth B, 2011, 269(19): 2133. doi:  10.1016/j.nimb.2011.07.004
[92] CROCOMBETTE J P, VAN WAMBEKE C. EPJ Nuclear Sciences & Technologies, 2019, 5: 7. doi:  10.1051/epjn/2019003
[93] WEBER W J, ZHANG Y. Current Opinion in Solid State and Materials Science, 2019, 23(4): 100757. doi:  10.1016/j.cossms.2019.06.001
[94] CHEN S, BERNARD D. Results in Physics, 2020, 16: 102835. doi:  10.1016/j.rinp.2019.102835
[95] AGARWAL S, LIN Y, LI C, et al. Nucl Instr and Meth B, 2021, 503: 11. doi:  10.1016/j.nimb.2021.06.018
[96] CHEN S, BERNARD D. Annals of Nuclear Energy, 2020, 145: 107603. doi:  10.1016/j.anucene.2020.107603