高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轻奇特核结构中的核心激发——以11Be为例

楼建玲 陈洁 庞丹阳 张允 叶沿林

楼建玲, 陈洁, 庞丹阳, 张允, 叶沿林. 轻奇特核结构中的核心激发——以11Be为例[J]. 原子核物理评论, 2017, 34(2): 129-137. doi: 10.11804/NuclPhysRev.34.02.129
引用本文: 楼建玲, 陈洁, 庞丹阳, 张允, 叶沿林. 轻奇特核结构中的核心激发——以11Be为例[J]. 原子核物理评论, 2017, 34(2): 129-137. doi: 10.11804/NuclPhysRev.34.02.129
LOU Jianling, CHEN Jie, PANG Danyang, ZHANG Yun, YE Yanlin. Core Excitation in Light Exotic Nuclear Structure——Taking 11Be for Example[J]. Nuclear Physics Review, 2017, 34(2): 129-137. doi: 10.11804/NuclPhysRev.34.02.129
Citation: LOU Jianling, CHEN Jie, PANG Danyang, ZHANG Yun, YE Yanlin. Core Excitation in Light Exotic Nuclear Structure——Taking 11Be for Example[J]. Nuclear Physics Review, 2017, 34(2): 129-137. doi: 10.11804/NuclPhysRev.34.02.129

轻奇特核结构中的核心激发——以11Be为例

doi: 10.11804/NuclPhysRev.34.02.129
基金项目: 国家重点基础研究计划973项目(2013CB834402);国家自然科学基金资助项目(11275001,11275011,11275018)
详细信息
    作者简介:

    楼建玲(1981-),女,山东济南人,讲师,博士,从事放射性核束物理实验研究;E-mail:jllou@pku.edu.cn.

  • 中图分类号: O571.1

Core Excitation in Light Exotic Nuclear Structure——Taking 11Be for Example

Funds: National Basic Research Program of China(973 Program)(2013CB834402); National Natural Science Foundation of China(11275001, 11275011, 11275018)
  • 摘要: 近年来,越来越多的实验表明,很多轻奇特核结构中都有核心激发成分。本研究以丰中子晕核11Be为例,介绍核心激发成分的实验和理论研究进展,重点阐述核心激发成分对直接核反应微分截面的影响。实验上,1n移除反应及11Be(p,d)和10Be(d,p)转移反应是测量11Be核心激发成分比例的典型实验类型。理论上,发展了能够包括11Be核心激发成分的Faddeev AGS方法,XDWBA方法以及XCDCC方法。加入核心激发成分后,这些模型的计算结果可以更加合理地描述11Be在各种靶上的弹性散射和碎裂微分截面。通过对比是否包含核心激发成分的计算结果,发现其影响主要体现在弹散微分截面的大质心系角度,以及(p,d)转移反应角分布的小质心系角度。另外,对Ex=0:5s3 MeV的激发能区的碎裂反应,核心激发的影响不可忽略;对Ex=3s5:5 MeV的碎裂反应,核心激发的贡献非常重要。


    It was found that many light exotic nuclei have the core-excitation components. In this paper, taking one-neutron halo nucleus 11Be for example, the experimental and theoretical research progress, as well as the influences on the direct nuclear reaction differential cross sections of this exotic component were reviewed. The 1n removal, 11Be(p, d) and 10Be(d, p) transfer reactions are typical experimental methods to investigate this component. The Faddeev AGS, the XDWBA, and the XCDCC methods are developed to include this constituent in various theoretical models. With the core-excitation component, the calculated results can more reasonably describe the elastic scattering and breakup differential cross sections of 11Be impinging on various targets. Comparing the full XCDCC calculation with that omitting core-excitation effect, we found that this component mainly affects the elastic scattering differential cross sections at large center-of-mass angles, and the (p, d) transfer reaction angular distributions at small center-of-mass angles. In addition, its effect is non-negligible for the breakup reaction within the excitation energy interval of Ex = 0:5~3 MeV, and is remarkable for Ex =3 5:5 MeV.
  • [1] KORSHENINNIKOV A A, NIKOLSKII E YU, KUZMIN EA, et al. Phys Rev Lett, 2003, 90: 082501.
    [2] KEELEY N, SKAZA F, LAPOUX V, et al. Phys Lett B,2007, 646: 222.
    [3] LOU J L, YE Y L, PANG D Y, et al. Jour Phys G, 2013,420: 012076.
    [4] KAMADA H, YAMAGUCHI M, UZU E. Phys Rev C, 2013,88: 014005.
    [5] MATTA A, BEAUMEL D, OTSU H, et al. Phys Rev C, 2015,92: 041302(R).
    [6] WINFIELD J S, FORTIER S, CATFORD W N, et al. Nucl Phys A, 2001, 683: 48.
    [7] AUMANN T, NAVIN A, BALAMUTH D P, et al. Phys Rev Lett, 2000, 84: 35.
    [8] NAKAMURA T, KOBAYASHI N, KONDO Y, et al. Phys Rev Lett, 2014, 112: 142501.
    [9] FUKUDA M, ICHIHARA T, INABE N, et al. Phys Lett B,1991, 268: 339.
    [10] WANG M, AUDI G, WAPSTRA A H, et al. Chin Phys C,2012, 36: 1603.
    [11] TALMI I, UNNA I, Phys Rev Lett, 1960, 4: 469.
    [12] ALBURGER D E, CHASMAN C, JONES K W, et al. Phys Rev, 1964, 136: B916.
    [13] SCHMITT K T, JONES K L, BEY A, et al. Phys Rev Lett,2012, 108: 192701.
    [14] SHRIVASTAVA A, BLUMENFELD Y, KEELEY N, et al.Phys. Lett. B, 2004, 596: 54.
    [15] CHEN J, LOU J L, YE Y L, et al. Phys Rev C, 2016, 93:054613.
    [16] CHEN J, LOU J L, PANG D Y, et al. Sci China-Phys Mech Astron, 2016, 59: 632003.
    [17] FUKUDA N, NAKAMURA T, AOI N, et al. Phys Rev C,2004, 70, 054606.
    [18] DI PIETRO A, RANDISI G, SCUDERI V, et al. Phys Rev Lett, 2010, 105: 022701.
    [19] DI PIETRO A, SCUDERI V, MORO A M, et al. Phys Rev C, 2012, 85: 054607.
    [20] NAKAMURA T, SHIMOURA S, KOBAYASHI T, et al.Phys Lett B, 1994, 331: 296.
    [21] PALIT R, ADRICH P, AUMANN T, et al. Phys Rev C, 2003,68: 034318.
    [22] CRAVO E, CRESPO R, DELTUVA A, et al. Phys Rev C,2009, 79: 064610.
    [23] CRAVO E, CRESPO R, MORO A M, et al. Phys Rev C,2010, 81: 031601(R).
    [24] CRESPO R, DELTUVA A, MORO A M. Phys Rev C, 2011,83: 044622.
    [25] NIEWODNICZANSKI H, NURZYNSKI J, STRZA-LKOWSKI A, et al. Nucl Phys, 1964, 5: 386.
    [26] DELTUVA A. Phys Rev C, 2013, 88: 011601(R).
    [27] DELTUVA A. Phys Rev C, 2015, 91: 024607.
    [28] MORO A M, CRESPO R. Phys Rev C, 2012, 85: 054613.
    [29] MORO A M, LAY J A. Phys Rev Lett, 2012, 109: 232502.
    [30] G'OMEZ-RAMOS M, MORO A M, G'OMEZ-CAMACHO J, et al. Phys Rev C, 2015, 92: 014613.
    [31] SUMMERS N C, NUNES F M. Phys Rev C, 2007, 76,014611.
    [32] SUMMERS N C, NUNES F M, THOMPSON I J. Phys Rev C, 2014, 89: 069901(E).
    [33] DIEGO R DE, ARIAS J M, LAY J A, et al. Phys Rev C,2014, 89: 064609.
    [34] NUNES F M, DELTUVA A. Phys Rev C, 2011, 84: 034607.
    [35] SO W Y, KIM K S, CHOI K S, et al. Phys Rev C, 2015, 92:014627.
    [36] SO W Y, KIM K S, CHEOUN MYUNG-KI, et al. Phys Rev C, 2016, 93: 054624.
    [37] ZHANG Y, PANG D Y, LOU J L. Phys Rev C, 2016, 94:014619.
    [38] DAEHNICK W W, CHILDS J D, VRCELJ Z, et al. Phys Rev C, 1980, 21: 2253.
    [39] NUNES F M, CHRISTLEY J A, THOMPSON I J, et al.Nucl Phys A, 1996, 609: 43.
    [40] NUNES F M. Nucl Phys A, 2005, 757: 349.
    [41] BENNACEUR K, DOBACZEWSKI J, PLOSZAJCZAK M.Phys Lett B, 2000, 496: 154.
    [42] KORSHENINNIKOV A A, NIKOLSKII E YU,KOBAYASHI T, et al. Phys Lett B, 1995, 343: 53.
    [43] LAY J A, FEDOROV D V, JENSEN A S, et al. Eur Phys J A, 2010, 44: 261.
  • 加载中
计量
  • 文章访问数:  1650
  • HTML全文浏览量:  116
  • PDF下载量:  239
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-14
  • 修回日期:  2016-09-30
  • 刊出日期:  2017-06-20

轻奇特核结构中的核心激发——以11Be为例

doi: 10.11804/NuclPhysRev.34.02.129
    基金项目:  国家重点基础研究计划973项目(2013CB834402);国家自然科学基金资助项目(11275001,11275011,11275018)
    作者简介:

    楼建玲(1981-),女,山东济南人,讲师,博士,从事放射性核束物理实验研究;E-mail:jllou@pku.edu.cn.

  • 中图分类号: O571.1

摘要: 近年来,越来越多的实验表明,很多轻奇特核结构中都有核心激发成分。本研究以丰中子晕核11Be为例,介绍核心激发成分的实验和理论研究进展,重点阐述核心激发成分对直接核反应微分截面的影响。实验上,1n移除反应及11Be(p,d)和10Be(d,p)转移反应是测量11Be核心激发成分比例的典型实验类型。理论上,发展了能够包括11Be核心激发成分的Faddeev AGS方法,XDWBA方法以及XCDCC方法。加入核心激发成分后,这些模型的计算结果可以更加合理地描述11Be在各种靶上的弹性散射和碎裂微分截面。通过对比是否包含核心激发成分的计算结果,发现其影响主要体现在弹散微分截面的大质心系角度,以及(p,d)转移反应角分布的小质心系角度。另外,对Ex=0:5s3 MeV的激发能区的碎裂反应,核心激发的影响不可忽略;对Ex=3s5:5 MeV的碎裂反应,核心激发的贡献非常重要。


It was found that many light exotic nuclei have the core-excitation components. In this paper, taking one-neutron halo nucleus 11Be for example, the experimental and theoretical research progress, as well as the influences on the direct nuclear reaction differential cross sections of this exotic component were reviewed. The 1n removal, 11Be(p, d) and 10Be(d, p) transfer reactions are typical experimental methods to investigate this component. The Faddeev AGS, the XDWBA, and the XCDCC methods are developed to include this constituent in various theoretical models. With the core-excitation component, the calculated results can more reasonably describe the elastic scattering and breakup differential cross sections of 11Be impinging on various targets. Comparing the full XCDCC calculation with that omitting core-excitation effect, we found that this component mainly affects the elastic scattering differential cross sections at large center-of-mass angles, and the (p, d) transfer reaction angular distributions at small center-of-mass angles. In addition, its effect is non-negligible for the breakup reaction within the excitation energy interval of Ex = 0:5~3 MeV, and is remarkable for Ex =3 5:5 MeV.

English Abstract

楼建玲, 陈洁, 庞丹阳, 张允, 叶沿林. 轻奇特核结构中的核心激发——以11Be为例[J]. 原子核物理评论, 2017, 34(2): 129-137. doi: 10.11804/NuclPhysRev.34.02.129
引用本文: 楼建玲, 陈洁, 庞丹阳, 张允, 叶沿林. 轻奇特核结构中的核心激发——以11Be为例[J]. 原子核物理评论, 2017, 34(2): 129-137. doi: 10.11804/NuclPhysRev.34.02.129
LOU Jianling, CHEN Jie, PANG Danyang, ZHANG Yun, YE Yanlin. Core Excitation in Light Exotic Nuclear Structure——Taking 11Be for Example[J]. Nuclear Physics Review, 2017, 34(2): 129-137. doi: 10.11804/NuclPhysRev.34.02.129
Citation: LOU Jianling, CHEN Jie, PANG Danyang, ZHANG Yun, YE Yanlin. Core Excitation in Light Exotic Nuclear Structure——Taking 11Be for Example[J]. Nuclear Physics Review, 2017, 34(2): 129-137. doi: 10.11804/NuclPhysRev.34.02.129
参考文献 (43)

目录

    /

    返回文章
    返回