高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

反质子间相互作用的研究

张正桥 马余刚

张正桥, 马余刚. 反质子间相互作用的研究[J]. 原子核物理评论, 2017, 34(3): 296-301. doi: 10.11804/NuclPhysRev.34.03.296
引用本文: 张正桥, 马余刚. 反质子间相互作用的研究[J]. 原子核物理评论, 2017, 34(3): 296-301. doi: 10.11804/NuclPhysRev.34.03.296
ZHANG Zhengqiao, MA Yugan. Study of Interaction Between Antiprotons[J]. Nuclear Physics Review, 2017, 34(3): 296-301. doi: 10.11804/NuclPhysRev.34.03.296
Citation: ZHANG Zhengqiao, MA Yugan. Study of Interaction Between Antiprotons[J]. Nuclear Physics Review, 2017, 34(3): 296-301. doi: 10.11804/NuclPhysRev.34.03.296

反质子间相互作用的研究

doi: 10.11804/NuclPhysRev.34.03.296
基金项目: 国家自然科学基金资助项目(11035009,11220101005,11421505);国家重点基础研究发展计划项目(973计划)(2014CB845400)
详细信息
    作者简介:

    张正桥(1988-),研究生,江苏泰州人,从事原子核与粒子物理研究,E-mail:zhangzhengqiao@sinap.ac.cn

    通讯作者: 马余刚,E-mail:mayugang@sinap.ac.cn
  • 中图分类号: O571.53

Study of Interaction Between Antiprotons

Funds: National Natural Science Foundation of China(11035009, 11220101005, 11421505); National Basic Research Program of China(973 Program)(2014CB845400)
More Information
    Corresponding author: 10.11804/NuclPhysRev.34.03.296
  • 摘要: 随着对反物质研究的深入,人们需要迫切知道反质子之间的相互作用力是怎样的,是否与质子之间的作用是对称的。对这个作用力的测量,有助于我们理解反物质原子核的形成机制以及对物质-反物质对称性的理解。为此,STAR合作组利用相对论重离子加速器中金核-金核碰撞中产生的丰富的反质子,通过反质子-反质子动量关联函数的测量,并扣除了通过其他粒子衰变过来的次级反质子与其他反粒子关联的污染,精确地构建了反质子-反质子关联函数。然后,结合量子多粒子关联理论,定量提取出反质子-反质子的有效力程和散射长度这两个基本作用参数。研究表明,在实验精度内,反质子间的相互作用与正质子保持一致。反质子-反质子之间的强相互作用存在着吸引,它们可以克服由于同号(负电荷)的反质子-反质子之间的库仑排斥而结合成反物质原子核。这项研究首次实现了对反物质间相互作用力的测量,为进一步研究反原子核的形成和属性奠定了基础。同时为CPT对称性的检验提供了一种新的方式,对人类深刻认识物质世界的构成及其运动规律具有重要意义。


    With undergoing researches on antimatter physics, it is crucial to understand what the interaction between antiprotons is. Is it the same as the interaction between protons? This measurement will definitely help us to understand the formation mechanism of antimatter nuclei as well as the symmetry of matter and antimatter. In this context, our STAR collaboration measured the correlation function of antiproton-antiproton pairs from 200 GeV/c Au+Au collisions. After substracting the residual correlation due to the secondary antiprotons that decayed from other particles, the primary antiproton-antiproton correlation function is extracted. By applying the quantum theory of multi-particle correlation, two key parameters that characterize the corresponding strong interaction:namely, the scattering length (f0) and effective range (d0) were obtained. Within error bars, it is found that the f0 and d0 for the antiproton-antiproton interaction are consistent with their antiparticle counterparts -the ones for the proton-proton interaction. Like the force that holds ordinary protons together within the nuclei of atoms, the force between antiprotons is attractive and strong, which overcomes the tendency of the like (negatively) charged particles to repel one another, and allows the antiprotons to bind to form antinucleus. The current measurement is for the first time to measure the interaction between antimatter, it offers a foundation to understanding the structure of more-complex antinuclei and their properties. Also our measurement offers a new way to test the CPT symmetry, which has an important impact for human beings to understand the law of motion in our world.
  • [1] BAUR G, BOERO G, BRAUKSIEPE A, et al. Phys Lett B, 1996, 368(3):251.
    [2] BLANFORD G, CHRISTIAN D C, GOLLWITZER K, et al. Phys Rev Lett, 1998, 80(14):3037.
    [3] AMORETTI M, AMSLER C, BONOMI G, et al. Nature, 2002, 419(6906):456.
    [4] STAR Collaboration. Science, 2010, 328:58.
    [5] STAR Collaboration. Nature, 2011, 473:353.
    [6] MA Yugang. J Phys Conf Ser, 2013, 420:012036.
    [7] MA Yugang, CHEN Jinhui. China Basic Science, 2011, 2:20. (in Chinese) (马余刚, 陈金辉. 中国基础科学, 2011, 2:20.)
    [8] MA Yugang. Science Development Report[R]. Beijing:Chinese Academy of Sciences, 2012:108. (in Chinese) (马余刚. 科学发展报告[R]. 北京:中国科学院, 2012:108.)
    [9] MA Yugang, CHEN Jinhui, XUE Liang. Front Phys, 2012, 7:637.
    [10] AMS Collaboration. Phys Rev Lett, 2013, 110(14):141102.
    [11] AMS Collaboration. Phys Rev Lett, 2014, 113(22):121101
    [12] ALICE Collaboration. Nature Physics, 2015, 11:811.
    [13] STAR Collaboration. Nature, 2015, 527:345.
    [14] XU Zizong. Nuclear and Particle Physics Introduction[M]. Heifei:Press of University of Science and Technology of China, 2009:280. (in Chinese) (许咨宗. 核与粒子物理导论[M]. 合肥:中国科学技术大学出版社, 2009:280.)
    [15] ADAMS J, AGGARWAL M M, AHAMMED Z, et al. Nucl Phys A, 2005, 757:102.
    [16] PHENIX collaboration. Nucl Phys A, 2005, 757:184.
    [17] MA Yugang. Modern Physics, 2013, 25(5):27. (in Chinese) (马余刚. 现代物理知识, 2013, 25(5):27.)
    [18] STAR Collaboration. Nucl Instr Meth A, 2003, 499:624.
    [19] LLOPE W J (for the STAR Collaboration). Nucl Instr Meth A, 2012, 661:s110.
    [20] BROWN R H, TWISS R Q. Nature, 1956, 177(4497):27.
    [21] POCHODZALLA J, GELBKE C K, LYNCH W G, et al. Phys Rev C, 1987, 35:1695.
    [22] GYULASSY M. Phys Rev C, 1979, 20:2267.
    [23] BOAL D H, GELBKE C K, JENNINGS B K. Rev Mod Phys, 1990, 62(3):553.
    [24] LEDNICKY R. Phys Atomic Nuclei, 2004, 67:72.
    [25] LYNCH W G, CHITWOOD C B, TSANG M B, et al. Phys Rev Lett, 1983, 51:1850.
    [26] MA Yugang, WEI Yibin, SHEN Wenqing, et al. Phys Rev C, 2006, 73:014604.
    [27] MA Yugang, CAI Xiangzhou, CHEN Jingen, et al. Nucl Phys A, 2007, 790:299c.
    [28] LISA M A, PRATT S, SOLTZ R, et al. Ann Rev Nucl Part Sci, 2005, 55:357.
    [29] MA Yugang, FAND Deqing, SUN Xiaoyan, et al. Phys Lett B, 2015, 743:306.
    [30] FAND Deqing, MA Yugang, SUN Xiaoyan, et al. Phys Rev C, 2016, 94(4):044621.
    [31] LEDNICKY R, LYUBOSHITZ V L. Sov J Nucl Phys, 1982, 35:770.
    [32] STAR Collaboration. Phys Rev C, 2006, 74:064906.
    [33] STAR Collaboration. Phys Rev Lett, 2015, 114:022301.
    [34] CHOJNACKI M, KISIEL A, FLORKOWSKI W, et al. Comput Phys Commun, 2012, 183:746.
    [35] MATHELITSCH L, VERWEST B J. Phys Rev C, 1984, 29:739.
    [36] ŠLAUS I, AKAISHI Y, TANAKA H. Phys Rep, 1989, 173:257.
  • 加载中
计量
  • 文章访问数:  1921
  • HTML全文浏览量:  248
  • PDF下载量:  173
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-25
  • 修回日期:  2017-05-10
  • 刊出日期:  2017-07-18

反质子间相互作用的研究

doi: 10.11804/NuclPhysRev.34.03.296
    基金项目:  国家自然科学基金资助项目(11035009,11220101005,11421505);国家重点基础研究发展计划项目(973计划)(2014CB845400)
    作者简介:

    张正桥(1988-),研究生,江苏泰州人,从事原子核与粒子物理研究,E-mail:zhangzhengqiao@sinap.ac.cn

    通讯作者: 马余刚,E-mail:mayugang@sinap.ac.cn
  • 中图分类号: O571.53

摘要: 随着对反物质研究的深入,人们需要迫切知道反质子之间的相互作用力是怎样的,是否与质子之间的作用是对称的。对这个作用力的测量,有助于我们理解反物质原子核的形成机制以及对物质-反物质对称性的理解。为此,STAR合作组利用相对论重离子加速器中金核-金核碰撞中产生的丰富的反质子,通过反质子-反质子动量关联函数的测量,并扣除了通过其他粒子衰变过来的次级反质子与其他反粒子关联的污染,精确地构建了反质子-反质子关联函数。然后,结合量子多粒子关联理论,定量提取出反质子-反质子的有效力程和散射长度这两个基本作用参数。研究表明,在实验精度内,反质子间的相互作用与正质子保持一致。反质子-反质子之间的强相互作用存在着吸引,它们可以克服由于同号(负电荷)的反质子-反质子之间的库仑排斥而结合成反物质原子核。这项研究首次实现了对反物质间相互作用力的测量,为进一步研究反原子核的形成和属性奠定了基础。同时为CPT对称性的检验提供了一种新的方式,对人类深刻认识物质世界的构成及其运动规律具有重要意义。


With undergoing researches on antimatter physics, it is crucial to understand what the interaction between antiprotons is. Is it the same as the interaction between protons? This measurement will definitely help us to understand the formation mechanism of antimatter nuclei as well as the symmetry of matter and antimatter. In this context, our STAR collaboration measured the correlation function of antiproton-antiproton pairs from 200 GeV/c Au+Au collisions. After substracting the residual correlation due to the secondary antiprotons that decayed from other particles, the primary antiproton-antiproton correlation function is extracted. By applying the quantum theory of multi-particle correlation, two key parameters that characterize the corresponding strong interaction:namely, the scattering length (f0) and effective range (d0) were obtained. Within error bars, it is found that the f0 and d0 for the antiproton-antiproton interaction are consistent with their antiparticle counterparts -the ones for the proton-proton interaction. Like the force that holds ordinary protons together within the nuclei of atoms, the force between antiprotons is attractive and strong, which overcomes the tendency of the like (negatively) charged particles to repel one another, and allows the antiprotons to bind to form antinucleus. The current measurement is for the first time to measure the interaction between antimatter, it offers a foundation to understanding the structure of more-complex antinuclei and their properties. Also our measurement offers a new way to test the CPT symmetry, which has an important impact for human beings to understand the law of motion in our world.

English Abstract

张正桥, 马余刚. 反质子间相互作用的研究[J]. 原子核物理评论, 2017, 34(3): 296-301. doi: 10.11804/NuclPhysRev.34.03.296
引用本文: 张正桥, 马余刚. 反质子间相互作用的研究[J]. 原子核物理评论, 2017, 34(3): 296-301. doi: 10.11804/NuclPhysRev.34.03.296
ZHANG Zhengqiao, MA Yugan. Study of Interaction Between Antiprotons[J]. Nuclear Physics Review, 2017, 34(3): 296-301. doi: 10.11804/NuclPhysRev.34.03.296
Citation: ZHANG Zhengqiao, MA Yugan. Study of Interaction Between Antiprotons[J]. Nuclear Physics Review, 2017, 34(3): 296-301. doi: 10.11804/NuclPhysRev.34.03.296
参考文献 (36)

目录

    /

    返回文章
    返回