高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超重原子核与新元素研究

周善贵

周善贵. 超重原子核与新元素研究[J]. 原子核物理评论, 2017, 34(3): 318-331. doi: 10.11804/NuclPhysRev.34.03.318
引用本文: 周善贵. 超重原子核与新元素研究[J]. 原子核物理评论, 2017, 34(3): 318-331. doi: 10.11804/NuclPhysRev.34.03.318
ZHOU Shangui. Study on Superheavy Nuclei and Superheavy Elements[J]. Nuclear Physics Review, 2017, 34(3): 318-331. doi: 10.11804/NuclPhysRev.34.03.318
Citation: ZHOU Shangui. Study on Superheavy Nuclei and Superheavy Elements[J]. Nuclear Physics Review, 2017, 34(3): 318-331. doi: 10.11804/NuclPhysRev.34.03.318

超重原子核与新元素研究

doi: 10.11804/NuclPhysRev.34.03.318
基金项目: 国家杰出青年科学基金资助项目(11525524);国家重点基础研究发展规划资助项目(2013CB834400);国家自然科学基金资助项目(11621131001、11647601和11711540016);中国科学院前沿科学重点研究项目
详细信息
    作者简介:

    周善贵(1971-),男,黑龙江讷河人,研究员,博士,从事核物理理论研究;E-mail:sgzhou@itp.ac.cn

  • 中图分类号: O571.21;O571.23;O571.6

Study on Superheavy Nuclei and Superheavy Elements

Funds: National Science Fund for Distinguished Young Scholars (11525524); National Key Basic Research Program of China (2013CB834400); National Natural Science Foundation of China (11621131001, 11647601 and 11711540016); Key Research Program of Frontier Sciences of CAS
  • 摘要: 当前,原子核物理研究的一个重要前沿是探索原子核的电荷与质量极限,研究超重原子核与超重元素的性质,以及合成超重原子核。20世纪60年代,基于量子壳效应,理论预言质子数为114、中子数为184的原子核及其相邻核具有较长的寿命,甚至可能是稳定的,形成一个超重稳定岛。这个理论预言促进了重离子加速器及相关探测设备的建造,推动了重离子物理的发展。到目前,已经合成到了118号元素,填满了元素周期表的第7行。然而,合成更重的超重元素或包含更多中子的超重原子核面临着很多挑战,需要理论与实验密切结合,探索超重原子核的性质与合成机制,以登上超重稳定岛。文章概要评述超重原子核与新元素研究。首先介绍超重原子核与超重元素研究的背景及理论预言,包括超重核存在的根源、理论预言的概况等。之后简要给出实验合成超重核取得的主要进展和新元素命名情况。关于合成更重的超重元素面临的挑战,文章将针对利用重离子熔合蒸发反应合成超重核的截面低、所合成的超重核缺中子等情况展开讨论。最后评述近年来超重原子核结构性质、衰变、裂变与合成机制等方面的理论研究进展,包括超重核区的幻数和超重岛的位置,超重核的稳定性,利用重离子熔合蒸发反应合成超重核的三步过程及其复杂性,利用多核子转移合成超重核的探索,等等。


    The exploration of charge and mass limits of atomic nuclei and the synthesis of long-lived or stable superheavy nuclei (SHN) are at the frontier of modern nuclear physics. In the 1960s, based on the stability originating from quantum shell effects, the possible existence of an island of stability around 298114 was predicted. This prediction advanced the construction of heavy ion accelerators and detectors and the development of heavy ion physics. So far, superheavy elements (SHE) with Z up to 118 have been synthesized via heavy ion fusion reactions in laboratories. Recently the IUPAC/IUPAP Joint Working Party (JWP) concluded that criteria for the discovery of new elements have been met for those with Z=113, 115, 117 and 118. Therefore the seventh period of the periodic table of elements is completed. To synthesize even heavier elements or more neutron-rich SHN by using heavy ion fusion reactions, one confronts many challenges. More efforts should be made to study the properties of SHN both experimentally and theoretically. In this short review on the study on SHN and SHE, we will first introduce the background and theoretical predictions of SHN, including the origin of the possible existence of SHN and the predicted island of stability of SHN, etc. Then we will present progresses made up to now concerning the synthesis of SHN and the naming of the four new elements. As for the challenges nuclear physicists confront in synthesizing even heavier SHEs, we will detail those connected with heavy ion fusion-evaporation reactions, namely, the tiny cross sections to produce SHN and the fact that only neutron-deficient SHNs can be synthesized. Finally we will discuss some theoretical progresses on the study of SHN, including the structure of SHN and proton and neutron magic numbers after 208Pb, the stability and the synthesis mechanism of SHN as well as what we should focus on in the future.
  • [1] HOFMANN S, MÜNZENBERG G. Rev Mod Phys, 2000, 72:733.
    [2] OGANESSIAN Y T, SOBICZEWSKI A, TER-AKOPIAN G M. Phys Scr, 2017, 92:023003
    [3] MORITA K. Nucl Phys A, 2015, 944:30.
    [4] INDELICATO P, KARPOV A. Nature, 2013, 498:40.
    [5] ZHOU S G. Phys, 2014, 43:817. (in Chinese) (周善贵. 物理, 2014, 43:817.)
    [6] MYERS W D, SWIATECKI W J. Nucl Phys, 1966, 81:1.
    [7] WONG C Y. Phys Lett, 1966, 21:688.
    [8] SOBICZEWSKI A, GAREEV F, KALINKIN B. Phys Lett, 1966, 22:500.
    [9] STRUTINSKY V M. Yad Fiz, 1966, 3:614.
    [10] MELDNER H. Arkiv Fysik, 1967, 36:593. Proceedings of the Lysekil Symposium:Nuclides far off the Stability Line, Aug. 21-27, 1966, Sweden.
    [11] NILSSON S G, TSANG C F, SOBICZEWSKI A, et al. Nucl Phys A, 1969, 131:1
    [12] MOSEL U, GREINER W. Z Phys A, 1969, 222:261.
    [13] SEIFE C A. Science, 2005, 309:78.
    [14] HERRMANN G. Nature, 1979, 280:543.
    [15] DELLINGER F, KUTSCHERA W, FORSTNER O, et al. Phys Rev C, 2011, 83:015801.
    [16] TER-AKOPIAN G M, DMITRIEV S N. Nucl Phys A, 2015, 944:177.
    [17] CAI S Y. Man-made elements[M]. Shanghai Popular Science Press, 2006. (in Chinese) (蔡善钰. 人造元素[M]. 上海科学普及出版社, 2006.)
    [18] XU H S, ZHOU X H, XIAO G Q, et al. Nucl Phys Rev, 2003, 20:76. (in Chinese) (徐瑚珊, 周小红, 肖国青, 等. 原子核物理评论, 2003, 20:76.)
    [19] OGANESSIAN Y. Fusion and fission induced by heavy ions. In BRAUN-MUNZINGER P, GELBKE C K, HARNEY H L, editors, Proceedings of Symposium on Classical and Quantum Mechanical Aspects of Heavy Ion Collisions, Heidelberg, Germany, Oct. 2-5, 1974, volume 33 of Lecture Notes in Physics. Springer-Verlag, 1975:221.
    [20] WANG Y. China Terminology, 2017, 19(2):46. (in Chinese) (王颖霞. 中国科技术语, 2017, 19(2):46.)
    [21] KAROL P J, BARBER R C, SHERRILL B M, et al. Pure Appl Chem, 2016, 88:139.
    [22] KAROL P J, BARBER R C, SHERRILL B M, et al. Pure Appl Chem, 2016, 88:155.
    [23] LUO Y X. Chin Sci Bull, 2016, 61:2326. (in Chinese) (罗亦孝. 科学通报, 2016, 61:2326.)
    [24] China National Committee for Terms in Sciences and Technologies. China Terminology, 2017, 19(2):25. (in Chinese) (全国科学技术名词审定委员会. 中国科技术语, 2017, 19(2):25.)
    [25] ZHANG H Q. China Terminology, 2017, 19(2):26. (in Chinese) (张焕乔. 中国科技术语, 2017, 19(2):26.)
    [26] ZHOU S G. China Terminology, 2017, 19(2):35. (in Chinese) (周善贵. 中国科技术语, 2017, 19(2):35.)
    [27] CAI L. China Terminology, 2017, 19(2):38. (in Chinese) (才磊. 中国科技术语, 2017, 19(2):38.)
    [28] QIN Z, WU X L, DING H J, et al. Nucl Phys Rev, 2006, 23:404.
    [29] GAN Z G, QIN Z, FAN H M, et al. Eur Phys J A, 2001, 10:21.
    [30] GAN Z G, GUO J S, WU X L, et al. Eur Phys J A, 2004, 20:385.
    [31] ZHANG Z Y, MA L, GAN Z G, et al. Nucl Instr Meth B, 2013, 317, Part B:315.
    [32] ZHANG Z Y, GAN Z G, MA L, et al. Chin Phys Lett, 2012, 29:012502.
    [33] ZHANG Z Y, GAN Z G, MA L, et al. Phys Rev C, 2014, 89:014308.
    [34] MA L, ZHANG Z Y, GAN Z G, et al. Phys Rev C, 2015, 91:051302(R).
    [35] YANG H B, ZHANG Z Y, WANG J G, et al. Eur Phys J A, 2015, 51:88.
    [36] SUN M D, LIU Z, HUANG T H, et al. 2017, 771:303.
    [37] GAN Z G, JIANG J, YANG H B, et al. Chin Sci Bull, 2016, 61:2502. (in Chinese) (甘再国, 姜舰, 杨华彬, 等. 科学通报, 2016, 61:2502.)
    [38] HOFMANN S, ACKERMANN D, ANTALIC S, et al. Probing Shell Effects at Z=120 and N=184. GSI Scientific Report (2008) NUSTAR-SHE-01, 2009.
    [39] OGANESSIAN Y T, UTYONKOV V K, LOBANOV Y V, et al. Phys Rev C, 2009, 79:024603.
    [40] HOFMANN S, HEINZ S, ACKERMANN D, et al. Attempts for the Synthesis of New Elements at SHIP. GSI Scientific Report (2011) PHN-NUSTAR-SHE-01, 2012.
    [41] DÜLLMANN C E, YAKUSHEV A, KHUYAGBAATAR J, et al. Upgrade of the Gas-filled Recoil Separator TASCA and First Search Experiment for the New Element 120 in the Reaction 50Ti +249Cf. GSI Scientific Report (2011) PHN-NUSTAR-SHE-02, 2012.
    [42] HOFMANN S, HEINZ S, MANN R, et al. Eur Phys J A, 2016, 52:116.
    [43] MORITA K, MORIMOTO K, KAJI D, et al. J Phys Soc Jpn, 2012, 81:103201.
    [44] ZHOU X H. High Intensity Heavy Ion Accelerator Facility (HIAF) and its Physics Goals, 2016. Talk given at the CUSTIPEN-IMP-PKU Workshop on Physics of Exotic Nuclei, Dec. 12-15, 2016, Huizhou, China.
    [45] DEVARAJA H M, HEINZ S, BELIUSKINA O, et al. Phys Lett B, 2015, 748:199.
    [46] BARRETT J S, LOVELAND W, YANEZ R, et al. Phys Rev C, 2015, 91:064615.
    [47] HEINZ S, DEVARAJA H M, BELIUSKINA O, et al. Euro Phys J A, 2016, 52:278.
    [48] XU H S, HUANG T H, SUN Z Y, et al. Nucl Phys Rev, 2006, 23:359. (in Chinese) (徐瑚珊, 黄天衡, 孙志宇, 等. 原子核物理评论, 2006, 23:359.)
    [49] FENG Z Q, JIN G M, HUANG M H, et al. Chin Phys Lett, 2007, 24:2551.
    [50] SHEN C, ABE Y, BOILLEY D, et al. Int J Mod Phys E, 2008, 17:66.
    [51] ZAGREBAEV V, GREINER W. Phys Rev C, 2008, 78:034610.
    [52] LIU Z H, BAO J D. Phys Rev C, 2009, 80:034601.
    [53] LI L L, LU B N, WANG N, et al. Nucl Phys Rev, 2014, 31:253. (in Chinese) (李璐璐, 吕炳楠, 王楠, 等. 原子核物理评论, 2014, 31:253.)
    [54] LU B N, ZHAO J, ZHAO E G, et al. Superheavy nuclei and fission barriers. In MENG J, editor, Relativistic Density Functional for Nuclear Structure, volume 10 of International Review of Nuclear Physics, chapter 5. Superheavy nuclei and fission barriers, 171-217. World Scientific Publishing Co. Pte. Ltd., 2016.
    [55] SOBICZEWSKI A, POMORSKI K. Prog Part Nucl Phys, 2007, 58:292.
    [56] ZHANG W, MENG J, ZHANG S, et al. Nucl Phys A, 2005, 753:106.
    [57] MO Q, LIU M, WANG N. Phys Rev C, 2014, 90:024320.
    [58] RUTZ K, BENDER M, BURVENICH T, et al. Phys Rev C, 1997, 56:238.
    [59] ZHOU X R, QIU C, SAGAWA H. Effect of Tensor Interaction on the Shell Structure of Superheavy Nuclei. In BAI H B, MENG J, ZHAO E G, et al. editors, Nuclear Structure in China 2010-Proceedings of the 13th National Conference on Nuclear Structure in China, Chi-Feng, Inner Mongolia, China, 24-30 July 2010. World Scientific, 2011:259.
    [60] LI J J, LONG W H, MARGUERON J, et al. Phys Lett B, 2014, 732:169.
    [61] PATYK Z, SOBICZEWSKI A. Nucl Phys A, 1991, 533:132.
    [62] PEI J C, XU F R, WU Z Y, et al. Nucl Phys Rev, 2003, 20:116. (in Chinese) (裴俊琛, 许甫荣, 吴哲英, 等. 原子核物理评论, 2003, 20:116.)
    [63] KOURA H, CHIBA S. J Phys Soc Jpn, 2013, 82:014201.
    [64] ISMAIL M, ELLITHI A Y, ADEL A, et al. Chin Phys C, 2016, 40:124102
    [65] XIA C J. Sci China-Phys Mech Astron, 2016, 46:023021. (in Chinese) (夏铖君. 中国科学:物理学力学天文学, 2016, 46:023021.)
    [66] XIA C J, PENG G X, ZHAO E G, et al. Science Bulletin, 2016, 61:172.
    [67] XIA C J, PENG G X, ZHAO E G, et al. Phys Rev D, 2016, 93:085025.
    [68] RUEDA J A, WU Y B, XUE S S. Surface tension of compressed, superheavy atoms. arXiv:1701.08146[nucl-th], 2017.
    [69] ZHANG H F, GAO Y, WANG N, et al. Phys Rev C, 2012, 85:014325.
    [70] ZHANG S, ZHANG Y, CUI J, et al. Phys Rev C, 2017, 95:014311.
    [71] ZHOU S G. Structure of Exotic Nuclei:A Theoretical Review[C]//KIBEDI T, LEINWEBER D, SIMENEL C, et al. ed. PoS(INPC2016), 2017:373.
    [72] WIENHOLTZ F, BECK D, BLAUM K, et al. Nature, 2013, 498:346.
    [73] STEPPENBECK D, TAKEUCHI S, AOI N, et al. Nature, 2013, 502:207.
    [74] GARCIA RUIZ R F, BISSELL M L, BLAUM K, et al. Nat Phys, 2016, 12:594.
    [75] WEN K, ZHANG Z H, ZHAO E G, et al. Sci Sin-Phys Mech Astron, 2012, 42:22. (in Chinese) (温凯, 张振华, 赵恩广, 等. 中国科学:物理学力学天文学, 2012, 42:22.)
    [76] ĆWIOK S, HOFMANN S, NAZAREWICZ W. Nucl Phys A, 1994, 573:356.
    [77] MUNTIAN I, PATYK Z, SOBICZEWSKI A. Phys Rev C, 1999, 60:041302(R).
    [78] SOBICZEWSKI A, MUNTIAN I, PATYK Z. Phys Rev C, 2001, 63:034306.
    [79] PARKHOMENKO A, SOBICZEWSKI A. Acta Phys Pol B, 2004, 35:2447.
    [80] PARKHOMENKO A, SOBICZEWSKI A. Acta Phys Pol B, 2005, 36:3115.
    [81] ADAMIAN G G, ANTONENKO N V, SCHEID W. Phys Rev C, 2010, 81:024320.
    [82] ADAMIAN G G, ANTONENKO N V, KUKLIN S N, et al. Phys Rev C, 2010, 82:054304.
    [83] ADAMIAN G G, ANTONENKO N V, MALOV L A, et al. Phys Part Nucl, 2010, 41:1101.
    [84] ADAMIAN G G, ANTONENKO N V, KUKLIN S N, et al. Phys Rev C, 2011, 84:024324.
    [85] XU F R, ZHAO E G, WYSS R, et al. Phys Rev Lett, 2004, 92:252501.
    [86] LIU H L, XU F R, WALKER P M, et al. Phys Rev C, 2011, 83:011303.
    [87] LIU H L, XU F R, WALKER P M. Phys Rev C, 2012, 86:011301(R).
    [88] BENDER M, RUTZ K, REINHARD P G, et al. Phys Rev C, 1998, 58:2126.
    [89] AFANASJEV A V, KHOO T L, FRAUENDORF S, et al. Phys Rev C, 2003, 67:024309.
    [90] BENDER M, BONCHE P, DUGUET T, et al. Nucl Phys A, 2003, 723:354.
    [91] DELAROCHE J P, GIROD M, GOUTTE H, et al. Nucl Phys A, 2006, 771:103.
    [92] JOLOS R V, MALOV L A, SHIRIKOVA N Y, et al. J Phys G:Nucl Part Phys, 2011, 38:115103.
    [93] ZHUANG K, LI Z B, LIU Y X. Commun Theor Phys, 2012, 57:271.
    [94] SUN Y, LONG G L, AL-KHUDAIR F, et al. Phys Rev C, 2008, 77:044307.
    [95] CHEN Y S, SUN Y, GAO Z C. Phys Rev C, 2008, 77:061305(R).
    [96] AL-KHUDAIR F, LONG G L, SUN Y. Phys Rev C, 2009, 79:034320.
    [97] CUI J W, ZHOU X R, CHEN F Q, et al. Phys Rev C, 2014, 90:014321.
    [98] EGIDO J L, RING P. J Phys G:Nucl Phys, 1982, 8:L43.
    [99] EGIDO J, RING P. Nucl Phys A, 1984, 423:93.
    [100] HE X T, REN Z Z, LIU S X, et al. Nucl Phys A, 2009, 817:45.
    [101] ZHANG Z H. Theoretical investigation of the spectroscopy of the transfermium and the super-heavy nuclei[D]. Beijing:Institute of Theoretical Physics, Chinese Academy of Sciences, 2012. (in Chinese) (张振华. 超镄核以及超重核谱学的理论研究[D]. 北京:中国科学院理论物理研究所, 2012.)
    [102] ZHANG Z H, WEN K, HE X T, et al. Nucl Phys Rev, 2013, 30:268. (in Chinese) (张振华, 温凯, 贺晓涛, 等. 原子核物理评论, 2013, 30:268.)
    [103] ZHANG Z H, ZENG J Y, ZHAO E G, et al. Phys Rev C, 2011, 83:011304(R).
    [104] ZHANG Z H, HE X T, ZENG J Y, et al. Phys Rev C, 2012, 85:014324..
    [105] ZHANG Z H, MENG J, ZHAO E G, et al. Phys Rev C, 2013, 87:054308.
    [106] PIERCE T E, BLANN M. Nucl Phys A, 1967, 106:14.
    [107] NILSSON S G, NIX J R, SOBICZEWSKI A, et al. Nucl Phys A, 1968, 115:545.
    [108] NILSSON S G, THOMPSON S G, TSANG C F. Phys Lett B, 1969, 28:458.
    [109] FISET E O, NIX J R. Nucl Phys A, 1972, 193:647.
    [110] XU C, REN Z, GUO Y. Phys Rev C, 2008, 78:044329.
    [111] KIREN O V, GUDENNAVER S B, BUBBLY S G. Rom J Phys, 2012, 57:1335.
    [112] STASZCZAK A, BARAN A, NAZAREWICZ W. Phys Rev C, 2013, 87:024320.
    [113] QIAN Y, REN Z. Phys Rev C, 2014, 90:064308.
    [114] SANTHOSH K P, PRIYANKA B. Nucl Phys A, 2015, 940:21.
    [115] BAO X J, GUO S Q, ZHANG H F, et al. J Phys G:Nucl Part Phys, 2015, 42:085101.
    [116] MÖLLER P. EPJ Web Conf, 2016, 131:03002.
    [117] SUN X D, DENG J G, XIANG D, et al. Phys Rev C, 2017, 95:044303.
    [118] JIN G M. Nucl Phys Rev, 2003, 20:71. (in Chinese) (靳根明. 原子核物理评论, 2003, 20:71.)
    [119] ZHU L, XIE W J, ZHANG F S. Phys Rev C, 2014, 89:024615.
    [120] ADAMIAN G, ANTONENKO N, SCHEID W. Clustering Effects Within the Dinuclear Model. In BECK C, editor, Lecture Notes in Physics, volume 848, 165-227. Berlin Heidelberg:Springer, 2012.
    [121] WANG N, ZHAO E G, SCHEID W, et al. Phys Rev C, 2012, 85:041601(R).
    [122] SIWEK-WILCZYNSKA K, CAP T, KOWAL M, et al. Phys Rev C, 2012, 86:014611.
    [123] LIANG Y J, ZHU M, LIU Z H, et al. Phys Rev C, 2012, 86:037602.
    [124] WONG C Y. Phys Rev C, 2012, 86:064603.
    [125] LIU Z H, BAO J D. Phys Rev C, 2013, 87:034616.
    [126] ZHANG J, WANG C, REN Z. Nucl Phys A, 2013, 909:36.
    [127] NASIROV A, KIM K, MANDAGLIO G, et al. Euro Phys J A, 2013, 49:147.
    [128] BAO X J, GAO Y, LI J Q, et al. Phys Rev C, 2015, 91:011603(R).
    [129] ZHU L, FENG Z Q, ZHANG F S. J Phys G:Nucl Part Phys, 2015, 42:085102.
    [130] BAO X J, GAO Y, LI J Q, et al. Phys Rev C, 2015, 92:034612.
    [131] LIU L, SHEN C, LI Q, et al. Eur Phys J A, 2016, 52:35.
    [132] BAO X J, GAO Y, LI J Q, et al. Phys Rev C, 2016, 93:044615.
    [133] HONG J, ADAMIAN G, ANTONENKO N. Phys Lett B, 2017, 764:42.
    [134] ZHU L, SU J, HUANG C Y, et al. Chin Phys C, 2016, 40:124105.
    [135] FENG Z Q, JIN G M, LI J Q, et al. Phys Rev C, 2007, 76:044606.
    [136] LIU Z H, BAO J D. Phys Rev C, 2009, 80:054608.
    [137] NASIROV A K, MANDAGLIO G, GIARDINA G, et al. Phys Rev C, 2011, 84:044612.
    [138] LIU Z H, BAO J D. Phys Rev C, 2011, 84:031602(R).
    [139] WANG N, TIAN J, SCHEID W. Phys Rev C, 2011, 84:061601(R).
    [140] NAIK R S, LOVELAND W, SPRUNGER P H, et al. Phys Rev C, 2007, 76:054604.
  • 加载中
计量
  • 文章访问数:  2503
  • HTML全文浏览量:  351
  • PDF下载量:  617
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-20
  • 修回日期:  2017-02-20
  • 刊出日期:  2017-07-18

超重原子核与新元素研究

doi: 10.11804/NuclPhysRev.34.03.318
    基金项目:  国家杰出青年科学基金资助项目(11525524);国家重点基础研究发展规划资助项目(2013CB834400);国家自然科学基金资助项目(11621131001、11647601和11711540016);中国科学院前沿科学重点研究项目
    作者简介:

    周善贵(1971-),男,黑龙江讷河人,研究员,博士,从事核物理理论研究;E-mail:sgzhou@itp.ac.cn

  • 中图分类号: O571.21;O571.23;O571.6

摘要: 当前,原子核物理研究的一个重要前沿是探索原子核的电荷与质量极限,研究超重原子核与超重元素的性质,以及合成超重原子核。20世纪60年代,基于量子壳效应,理论预言质子数为114、中子数为184的原子核及其相邻核具有较长的寿命,甚至可能是稳定的,形成一个超重稳定岛。这个理论预言促进了重离子加速器及相关探测设备的建造,推动了重离子物理的发展。到目前,已经合成到了118号元素,填满了元素周期表的第7行。然而,合成更重的超重元素或包含更多中子的超重原子核面临着很多挑战,需要理论与实验密切结合,探索超重原子核的性质与合成机制,以登上超重稳定岛。文章概要评述超重原子核与新元素研究。首先介绍超重原子核与超重元素研究的背景及理论预言,包括超重核存在的根源、理论预言的概况等。之后简要给出实验合成超重核取得的主要进展和新元素命名情况。关于合成更重的超重元素面临的挑战,文章将针对利用重离子熔合蒸发反应合成超重核的截面低、所合成的超重核缺中子等情况展开讨论。最后评述近年来超重原子核结构性质、衰变、裂变与合成机制等方面的理论研究进展,包括超重核区的幻数和超重岛的位置,超重核的稳定性,利用重离子熔合蒸发反应合成超重核的三步过程及其复杂性,利用多核子转移合成超重核的探索,等等。


The exploration of charge and mass limits of atomic nuclei and the synthesis of long-lived or stable superheavy nuclei (SHN) are at the frontier of modern nuclear physics. In the 1960s, based on the stability originating from quantum shell effects, the possible existence of an island of stability around 298114 was predicted. This prediction advanced the construction of heavy ion accelerators and detectors and the development of heavy ion physics. So far, superheavy elements (SHE) with Z up to 118 have been synthesized via heavy ion fusion reactions in laboratories. Recently the IUPAC/IUPAP Joint Working Party (JWP) concluded that criteria for the discovery of new elements have been met for those with Z=113, 115, 117 and 118. Therefore the seventh period of the periodic table of elements is completed. To synthesize even heavier elements or more neutron-rich SHN by using heavy ion fusion reactions, one confronts many challenges. More efforts should be made to study the properties of SHN both experimentally and theoretically. In this short review on the study on SHN and SHE, we will first introduce the background and theoretical predictions of SHN, including the origin of the possible existence of SHN and the predicted island of stability of SHN, etc. Then we will present progresses made up to now concerning the synthesis of SHN and the naming of the four new elements. As for the challenges nuclear physicists confront in synthesizing even heavier SHEs, we will detail those connected with heavy ion fusion-evaporation reactions, namely, the tiny cross sections to produce SHN and the fact that only neutron-deficient SHNs can be synthesized. Finally we will discuss some theoretical progresses on the study of SHN, including the structure of SHN and proton and neutron magic numbers after 208Pb, the stability and the synthesis mechanism of SHN as well as what we should focus on in the future.

English Abstract

周善贵. 超重原子核与新元素研究[J]. 原子核物理评论, 2017, 34(3): 318-331. doi: 10.11804/NuclPhysRev.34.03.318
引用本文: 周善贵. 超重原子核与新元素研究[J]. 原子核物理评论, 2017, 34(3): 318-331. doi: 10.11804/NuclPhysRev.34.03.318
ZHOU Shangui. Study on Superheavy Nuclei and Superheavy Elements[J]. Nuclear Physics Review, 2017, 34(3): 318-331. doi: 10.11804/NuclPhysRev.34.03.318
Citation: ZHOU Shangui. Study on Superheavy Nuclei and Superheavy Elements[J]. Nuclear Physics Review, 2017, 34(3): 318-331. doi: 10.11804/NuclPhysRev.34.03.318
参考文献 (140)

目录

    /

    返回文章
    返回