高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于RIBLL2的奇特原子核电荷改变截面实验测量进展

赵建伟 孙保华

赵建伟, 孙保华. 基于RIBLL2的奇特原子核电荷改变截面实验测量进展[J]. 原子核物理评论, 2018, 35(4): 362-368. doi: 10.11804/NuclPhysRev.35.04.362
引用本文: 赵建伟, 孙保华. 基于RIBLL2的奇特原子核电荷改变截面实验测量进展[J]. 原子核物理评论, 2018, 35(4): 362-368. doi: 10.11804/NuclPhysRev.35.04.362
ZHAO Jianwei, SUN Baohua. Progress of the Charge-changing Cross Section Measurements of Exotic Nuclei at RIBLL2[J]. Nuclear Physics Review, 2018, 35(4): 362-368. doi: 10.11804/NuclPhysRev.35.04.362
Citation: ZHAO Jianwei, SUN Baohua. Progress of the Charge-changing Cross Section Measurements of Exotic Nuclei at RIBLL2[J]. Nuclear Physics Review, 2018, 35(4): 362-368. doi: 10.11804/NuclPhysRev.35.04.362

基于RIBLL2的奇特原子核电荷改变截面实验测量进展

doi: 10.11804/NuclPhysRev.35.04.362
基金项目: 国家自然科学基金资助项目(U183220043,11475014);国家重点研发计划项目(2016YFA0400504)
详细信息
    作者简介:

    赵建伟(1990-),男(蒙古族),内蒙赤峰人,博士研究生,从事粒子物理与原子核物理研究;E-mail:jianweizhao@buaa.edu.cn

    通讯作者: 孙保华,E-mail:bhsun@buaa.edu.cn
  • 中图分类号: O571.53

Progress of the Charge-changing Cross Section Measurements of Exotic Nuclei at RIBLL2

Funds: National Natural Science Foundation of China (U183220043, 11475014); National Key Program for S&T Research and Development (2016YFA0400504)
  • 摘要: 电荷半径是原子核最基本的物理观测量之一,反映了原子核内的质子分布。精确的电荷半径测量是研究奇特原子核结构的重要手段。在相对论能区,通过高精度测量原子核的电荷改变截面来提取电荷半径是近年来发展起来的一种新方法,这种方法尤其适于探索产额很低的奇特原子核。自2013年以来,北京航空航天大学-中国科学院近代物理研究所课题组基于兰州第二条次级束流线(RIBLL2),提出并建成原子核电荷改变截面测量平台,研制了相关的TOF-△E探测器系统,开展了轻核区二十余个原子核的电荷改变截面的实验测量工作。介绍了实验平台研制情况、初步结果以及下一步计划。


    Charge radius is one of the most fundamental observables of atomic nuclei, reflecting the proton distributions in nuclei. Their precision measurements have severed as a key tool to study nuclear structure. Recently, a novel method to deduce charge radii has been developed via precise measurements of charge-changing cross sections(CCCS) of exotic nuclei at relativistic energies. This method is in particular suitable for investigation of exotic nuclei with low production yield. In 2013, we proposed to make such measurements for exotic nuclei lighter than oxygen based on the RIBLL2 beam line. Since then, the TOF-△E detector system for particleidentification(PID) and the CCCS platform have been constructed, continuously optimized and tested. So far CCCS measurements on a carbon target have been performed for more than 20 isotopes. In this contribution, we will introduce the progress of detector development, the progress in PID, and our experimental progress and plan.
  • [1] SUN B H, LU Y, PENG J P, et al. Phys Rev C, 2014, 90:054318 and references therein.
    [2] BROWN B A. Phys Rev Lett, 2000, 85:5296.
    [3] SUN B H, LIU C Y, WANG H X. Phys Rev C, 2017, 95:014307.
    [4] NÖRTERSHÄUSER W, TIEDEMANN D, ŽÁKOVÁ M, et al. Phys Rev Lett, 2009, 102:062503.
    [5] KRIEGER A, BLAUM K, BISSELL M L, et al. Phys Rev Lett, 2012, 108:142501.
    [6] TRAN D T, ONG H J, HAGEN G, et al. Nature Communication, 2018, 9:1594.
    [7] GARCIARUIZ R F, BISSELL M L, BLAUM K, et al. Nature Physics, 2016, 12(6):594.
    [8] ZENG J Y. Acta Physica Sinica, 1975, 24:151. (in Chinese) (曾谨言. 物理学报, 1975, 24:151.)
    [9] ZHANG S Q, MENG J, ZHOU S G, et al. High Energy Physics and Nuclear Physics, 2002, 26(3):252. (in Chinese) (张双全, 孟杰, 周善贵, 等. 高能物理与核物, 2002, 26(3):252.)
    [10] LEI Y A, ZENG J Y. High Energy Physics and Nuclear Physics, 2007, 31(8):731. (in Chinese) (雷亦安, 曾谨言. 高能物理与核物理, 2007, 31(8):731.)
    [11] LEI Y A, ZHANG Z H, ZENG J Y. Commun Theor Phys, 2009, 51:123.
    [12] ZHANG S Q, MENG J, ZHOU S G, et al. Euro Phys J A, 2002, 13:285.
    [13] XIA X W, LIM Y, ZHAO P W, et al. Atomic Data and Nuclear Data Tables, 2018, 121-122:1.
    [14] WANG N, LI T. Phys Rev C, 2013, 88:011301(R).
    [15] NI D D, REN Z Z, DONG T K, et al. Phys Rev C, 2013, 87:024310.
    [16] QIAN Y B, REN Z Z, NI D D. Phys Rev C, 2013, 87:054323.
    [17] ZHOU S G, MENG J, RING P, et al. Phys Rev C, 2010, 82:011301(R).
    [18] MENG J, TOKI H, ZHOU S G, et al. Prog Part Nucl. Phys, 2006, 57:470.
    [19] SUN X X, ZHAO J, ZHOU S G. Phys Lett B, 2018, 785:530.
    [20] MENG J, ZHOU S G. J Phys G:Nucl Part Phys, 2015, 42:093101.
    [21] HAGEN G, EKSTRÖM A FORSSEN C, et al. Nature Physics, 2016, 12:186.
    [22] SUN Z H, WU Q, ZHAO Z H, et al. Phys Lett B, 2017, 769:227.
    [23] SHEN S H, LIANG H Z, MENG J, et al. Phys Rev C, 2017, 96:014316.
    [24] TSUKADA K, ENOKIZONO A, OHNISHI T, et al. Phys Rev Lett, 2017, 118:262501.
    [25] OZAWA A, BOCHKAREV O, CHULKOV L, et al. Nuclear Physics A 2001, 691:599.
    [26] YAMAGUCHI T, HACHIUMA I, KITAGAWA A, et al. Phys Rev Lett, 2011, 107:032502.
    [27] ESTRADE A, KANUNGO R, HORIUCHI W, et al. Phys Rev Lett, 2014, 113:132501.
    [28] TERASHIMA S, TANIHATA I, KANUNGO R, et al. Prog Theor Exp Phys, 2013, 101D02.
    [29] OZAWA A, MORIGUCHI T, OHTSUBO T, et al. Phys Rev C, 2014, 89:044602.
    [30] KANUNGO R, HORIUCHI W, HAGEN G, et al. Phys Rev Lett, 2016, 117:102501.
    [31] ZHAO J W, SUN B H, TANIHATA I, et al. Nucl Instr Meth A, 2016, 823:41.
    [32] LIN W J, ZHAO J W, SUN B H, et al. Chinese Physics C, 2017, 41(6):066001.
    [33] ZHANG X, HU R J, LU C G, et al. Nuclear Physics Review, 2017, 34(3):591. (in Chinese). (张兴, 胡荣江, 鲁辰桂, 等. 原子核物理评论, 2017, 34(3):591.)
    [34] KIMURA K, IZUMIKAWA T, KOYAMA R, et al. Nucl Instr Meth A, 2005, 538:608.
    [35] ZHANG X H, TANG S W, MA P, et al. Nucl Instr Meth A, 2015, 795:389.
    [36] CAEN Elecronic Instrumentation:VME modules.
    [37] SUN B H, ZHAO J W, ZHANG X H, et al. Science Bulletin, 2018, 63:78.
    [38] ANGELI I, MARINOVA K P. Atomic Data and Nuclear Data Tables, 2013, 99:69.
  • 加载中
计量
  • 文章访问数:  1744
  • HTML全文浏览量:  228
  • PDF下载量:  229
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-02
  • 修回日期:  2018-11-29
  • 刊出日期:  2020-05-03

基于RIBLL2的奇特原子核电荷改变截面实验测量进展

doi: 10.11804/NuclPhysRev.35.04.362
    基金项目:  国家自然科学基金资助项目(U183220043,11475014);国家重点研发计划项目(2016YFA0400504)
    作者简介:

    赵建伟(1990-),男(蒙古族),内蒙赤峰人,博士研究生,从事粒子物理与原子核物理研究;E-mail:jianweizhao@buaa.edu.cn

    通讯作者: 孙保华,E-mail:bhsun@buaa.edu.cn
  • 中图分类号: O571.53

摘要: 电荷半径是原子核最基本的物理观测量之一,反映了原子核内的质子分布。精确的电荷半径测量是研究奇特原子核结构的重要手段。在相对论能区,通过高精度测量原子核的电荷改变截面来提取电荷半径是近年来发展起来的一种新方法,这种方法尤其适于探索产额很低的奇特原子核。自2013年以来,北京航空航天大学-中国科学院近代物理研究所课题组基于兰州第二条次级束流线(RIBLL2),提出并建成原子核电荷改变截面测量平台,研制了相关的TOF-△E探测器系统,开展了轻核区二十余个原子核的电荷改变截面的实验测量工作。介绍了实验平台研制情况、初步结果以及下一步计划。


Charge radius is one of the most fundamental observables of atomic nuclei, reflecting the proton distributions in nuclei. Their precision measurements have severed as a key tool to study nuclear structure. Recently, a novel method to deduce charge radii has been developed via precise measurements of charge-changing cross sections(CCCS) of exotic nuclei at relativistic energies. This method is in particular suitable for investigation of exotic nuclei with low production yield. In 2013, we proposed to make such measurements for exotic nuclei lighter than oxygen based on the RIBLL2 beam line. Since then, the TOF-△E detector system for particleidentification(PID) and the CCCS platform have been constructed, continuously optimized and tested. So far CCCS measurements on a carbon target have been performed for more than 20 isotopes. In this contribution, we will introduce the progress of detector development, the progress in PID, and our experimental progress and plan.

English Abstract

赵建伟, 孙保华. 基于RIBLL2的奇特原子核电荷改变截面实验测量进展[J]. 原子核物理评论, 2018, 35(4): 362-368. doi: 10.11804/NuclPhysRev.35.04.362
引用本文: 赵建伟, 孙保华. 基于RIBLL2的奇特原子核电荷改变截面实验测量进展[J]. 原子核物理评论, 2018, 35(4): 362-368. doi: 10.11804/NuclPhysRev.35.04.362
ZHAO Jianwei, SUN Baohua. Progress of the Charge-changing Cross Section Measurements of Exotic Nuclei at RIBLL2[J]. Nuclear Physics Review, 2018, 35(4): 362-368. doi: 10.11804/NuclPhysRev.35.04.362
Citation: ZHAO Jianwei, SUN Baohua. Progress of the Charge-changing Cross Section Measurements of Exotic Nuclei at RIBLL2[J]. Nuclear Physics Review, 2018, 35(4): 362-368. doi: 10.11804/NuclPhysRev.35.04.362
参考文献 (38)

目录

    /

    返回文章
    返回