高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

理论预测超重核274-291Cn和266-287Ds的衰变模式

赵天亮 包小军

赵天亮, 包小军. 理论预测超重核274-291Cn和266-287Ds的衰变模式[J]. 原子核物理评论, 2018, 35(4): 455-462. doi: 10.11804/NuclPhysRev.35.04.455
引用本文: 赵天亮, 包小军. 理论预测超重核274-291Cn和266-287Ds的衰变模式[J]. 原子核物理评论, 2018, 35(4): 455-462. doi: 10.11804/NuclPhysRev.35.04.455
ZHAO Tianliang, BAO Xiaojun. Theoretical Descriptions of Decay Modes in 274-291Cn and 266-287Ds Superheavy Nuclei[J]. Nuclear Physics Review, 2018, 35(4): 455-462. doi: 10.11804/NuclPhysRev.35.04.455
Citation: ZHAO Tianliang, BAO Xiaojun. Theoretical Descriptions of Decay Modes in 274-291Cn and 266-287Ds Superheavy Nuclei[J]. Nuclear Physics Review, 2018, 35(4): 455-462. doi: 10.11804/NuclPhysRev.35.04.455

理论预测超重核274-291Cn和266-287Ds的衰变模式

doi: 10.11804/NuclPhysRev.35.04.455
基金项目: 国家自然科学基金资助项目(11705055,11475050);湖南省自然科学基金资助项目(2018JJ3324);湖南省教育厅优秀青年基金资助项目(17B154)
详细信息
  • 中图分类号: O571.2

Theoretical Descriptions of Decay Modes in 274-291Cn and 266-287Ds Superheavy Nuclei

Funds: National Natural Science Foundation of China (11705055, 11475050); Hunan Provincial Natural Science Foundation of China (2018JJ3324); Excellent Youth Fund of Hunan Provincial Education Department (17B154)
  • 摘要: 自发裂变和α衰变是影响超重核稳定性的两个主要因素。为了探索270Ds附近的长寿命的超重核,系统地计算了电荷数在104 ≤ Z ≤ 112范围内的α衰变与自发裂变之间的竞争。采用推广的液滴模型和唯象的解析公式计算了α衰变半衰期。基于包括壳效应和同位旋效应的WKB近似方法估算了相同超重核的自发裂变半衰期,进而预测了未知超重核274-276,279Cn与267-269Ds的衰变模式。


    The stability of superheavy nuclei (SHN) is controlled mainly by spontaneous fission and α decay processes. To investigate whether long lived SHN could really exist around 270Ds, the competition between α decay and spontaneous fission in the region 104 ≤ Z ≤ 112 are studied systematically. The α decay half-lives are investigated by employing a generalized liquid drop model (GLDM) and phenomenological analytical formula. Calculations of spontaneous fission half-lives for the same SHN are carried out based on the Wenzel-Kramers-Brillouin(WKB) approximation with both the shell effect and the isospin effect included. Decay modes are predicted for the unknown nuclei 274-276,279Cn and 267-269Ds.
  • [1] MYERS W D, SWIATECKI W J. Nucl Phys A, 1966, 81:1.
    [2] SOBICZEWSKI A, GAREEV F A, KALINKIN B N. Phys Lett, 1966, 22:500.
    [3] ĆWIOK S, DOBACZEWSKI J, HEENEN P H. et al. Nucl Phys A, 1996, 611:211.
    [4] HOFMANN S. Radiochim Acta, 2011, 99:405.
    [5] MORITA K, MORIMOTO K, KAJI D. et al. J Phys Soc Jpn, 2007, 76045001.
    [6] OGANESSIAN Y T. J Phys G:Nucl Part Phys, 2007, 34:R165.
    [7] OGANESSIAN Y T. Radiochim Acta, 2011, 99:429.
    [8] DVORAK J, BRUCHLE W, CHELNOKOV M. et al. Phys Rev Lett, 2006, 97:242501.
    [9] BARAN A, POMORSKI K, LUKASIAK A, et al. Nucl Phys A, 2016, 361:83.
    [10] HOFMANN S. J Phys G:Nucl Part Phys, 2015, 42:114001.
    [11] ANGHEL C I, SILISTEANU I. Phy Rev C, 2017, 95:034611.
    [12] BAO X J, GAO Y, LI J Q, et al. Phys Rev C, 2015, 92:034612.
    [13] BAO X J, GAO Y, LI J Q, el al. Phys Rev C, 2016, 93:044615.
    [14] XU C, REN Z Z. Phy Rev C, 2006, 74:014304.
    [15] POENARU D N, PLONSKI I H, GREINER W. Phy Rev C, 2006, 74:014312.
    [16] PEI J C, XU F R, LIN Z J, et al. Phys Rev C, 2007, 76:044326.
    [17] ISMAIL M, ELLITHI A Y, BOTROS M M. et al. Phys Rev C, 2010, 81:024602.
    [18] WANG Y Z, WANG S J, HOU Z Y, et al. Phys Rev C, 2015,92:064301.
    [19] GHODSI O N, DAEI-ATAOLLAH A. Phys Rev C, 2016, 93:024612.
    [20] FISET E O, NIX J R. Nucl Phys A, 1972, 193:647.
    [21] SMOLAŃCZUK R, SKALSKI J, SOBICZEWSKI A. Phys Rev C, 1995, 52:1871.
    [22] SMOLAŃCZUK R. Phys Rev C, 1997, 56:812.
    [23] SWIATECKI W. Phys Rev, 1955, 100:937.
    [24] XU C, REN Z Z. Phys Rev C, 2005, 71:014309.
    [25] XU C, REN Z Z, GUO Y Q. Phys Rev C, 2008, 78:044329.
    [26] KARPOV A V, ZAGREVAEV V I, MARTINEZ PALENZUELA Y, et al. Int J Mod Phys E, 2012, 21:1250013.
    [27] WARDA M, EGIDO J L. Phys Rev C, 2012, 86:014322.
    [28] STASZCZAK A, BARAN A, NAZAREWICZ W. Phys Rev C, 2013, 87:024320.
    [29] CHOWDHURY P R, SAMANTA C, BASU D N. Phys Rev C, 2008, 77:044603.
    [30] POENARU D N, GHERGHESCU R A, GREINER W. J Phys G:Nucl Part Phys, 2013, 40:105105.
    [31] QIAN Y B, REN Z Z. Eur Phys J A, 2013, 49:5.
    [32] SANTHOSH K P, SABINA S, JAYESH G J. Nucl Phys A, 2011, 850:34.
    [33] SANTHOSH K P, PRIYANKA B, UNNIKRISHNAN M S. Phys Rev C, 2012, 85:034604.
    [34] SANTHOSH K P, PRIYANKA B. J Phys G:Nucl Part Phys, 2012, 39:085106.
    [35] QIAN Y B, REN Z Z. Phys Rev C, 2014, 90:064308.
    [36] HILL D L, WHEELER J A. Phys Rev, 1953, 89:1102.
    [37] ROYER G, REMAUD B. J Phys G, 1984, 10:1541.
    [38] ROYER G, HADDAD F. Phys Rev C, 1995, 51:2813.
    [39] ROYER G, ZBIRI K. Nucl Phys A, 2002, 697:630.
    [40] BONILLA C, ROYER G. Acta Phys Hung A, 2006, 25(1):11.
    [41] ZHANG H F, ROYER G, LI J Q. Phys Rev C, 2011, 84:027303.
    [42] ZHANG H F, DONG J M, ROYER G, et al. Phys Rew C, 2009. 80:037307.
    [43] DONG J M, ZUO W, GU J Z, et al. Phys Rev C, 2010, 81:064309.
    [44] ROYER G. J Phys G:Nucl Part Phys, 2000, 26:1149.
    [45] BAO X J, ZHANG H F, ZHANG H F, et al. Nucl Phys A, 2014, 921:85.
    [46] BAO X J, GUO S Q, LI J Q, et al. Phys Rev C, 2017, 95:034323.
    [47] WANG M, WAPSTRA A H, KONDEV F G, et al. Chin Phys C, 2012, 36:1287-1602.
    [48] BAO X J, GUO S Q, ZHANG H F, et al. J Phys G:Nucl Part Phys, 2015, 42:085101.
    [49] RANDRUP J, TSANG C F, MOLLER P, et al. Nucl Phys A, 1973, 217:221.
    [50] DONG J M, ZUO W, SCHEID W. Phys Rev Lett, 2011, 107:012501.
    [51] PEREZMARTIN S, ROBLEDO L M. Int J Mod Phys E, 2009, 18:788-797.
    [52] MPLLER P, SIERK A J, ICHIKAWA T, et al. Phys Rev C, 2015, 91:024310.
    [53] JACHIMOWICZ P, KOWAL M, SKALSKI J. Phys Rev C, 2017, 95:014303.
    [54] WANG N, LIU M, WU X, et al. Phys Lett B, 2014, 734:215.
    [55] QI C, XU F R, LIOTTA R J, et al. Phys Rev Lett, 2009, 103:072501.
    [56] NI D D, REN Z Z, DONG T K, et al. Phys Rev C, 2008, 78:044310.
    [57] ZHAO T L, BAO X J, GUO S Q. J Phys G:Nucl Part Phys, 2018, 45:025106.
  • 加载中
计量
  • 文章访问数:  1908
  • HTML全文浏览量:  277
  • PDF下载量:  122
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-12
  • 修回日期:  2018-12-05
  • 刊出日期:  2020-05-03

理论预测超重核274-291Cn和266-287Ds的衰变模式

doi: 10.11804/NuclPhysRev.35.04.455
    基金项目:  国家自然科学基金资助项目(11705055,11475050);湖南省自然科学基金资助项目(2018JJ3324);湖南省教育厅优秀青年基金资助项目(17B154)
  • 中图分类号: O571.2

摘要: 自发裂变和α衰变是影响超重核稳定性的两个主要因素。为了探索270Ds附近的长寿命的超重核,系统地计算了电荷数在104 ≤ Z ≤ 112范围内的α衰变与自发裂变之间的竞争。采用推广的液滴模型和唯象的解析公式计算了α衰变半衰期。基于包括壳效应和同位旋效应的WKB近似方法估算了相同超重核的自发裂变半衰期,进而预测了未知超重核274-276,279Cn与267-269Ds的衰变模式。


The stability of superheavy nuclei (SHN) is controlled mainly by spontaneous fission and α decay processes. To investigate whether long lived SHN could really exist around 270Ds, the competition between α decay and spontaneous fission in the region 104 ≤ Z ≤ 112 are studied systematically. The α decay half-lives are investigated by employing a generalized liquid drop model (GLDM) and phenomenological analytical formula. Calculations of spontaneous fission half-lives for the same SHN are carried out based on the Wenzel-Kramers-Brillouin(WKB) approximation with both the shell effect and the isospin effect included. Decay modes are predicted for the unknown nuclei 274-276,279Cn and 267-269Ds.

English Abstract

赵天亮, 包小军. 理论预测超重核274-291Cn和266-287Ds的衰变模式[J]. 原子核物理评论, 2018, 35(4): 455-462. doi: 10.11804/NuclPhysRev.35.04.455
引用本文: 赵天亮, 包小军. 理论预测超重核274-291Cn和266-287Ds的衰变模式[J]. 原子核物理评论, 2018, 35(4): 455-462. doi: 10.11804/NuclPhysRev.35.04.455
ZHAO Tianliang, BAO Xiaojun. Theoretical Descriptions of Decay Modes in 274-291Cn and 266-287Ds Superheavy Nuclei[J]. Nuclear Physics Review, 2018, 35(4): 455-462. doi: 10.11804/NuclPhysRev.35.04.455
Citation: ZHAO Tianliang, BAO Xiaojun. Theoretical Descriptions of Decay Modes in 274-291Cn and 266-287Ds Superheavy Nuclei[J]. Nuclear Physics Review, 2018, 35(4): 455-462. doi: 10.11804/NuclPhysRev.35.04.455
参考文献 (57)

目录

    /

    返回文章
    返回