高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

质子-中子相互作用玻色子模型SU(3)算法与简单应用

胡宝越 吴宇晴 滕威 胡静 张宇

胡宝越, 吴宇晴, 滕威, 胡静, 张宇. 质子-中子相互作用玻色子模型SU(3)算法与简单应用[J]. 原子核物理评论, 2021, 38(4): 368-372. doi: 10.11804/NuclPhysRev.38.2021059
引用本文: 胡宝越, 吴宇晴, 滕威, 胡静, 张宇. 质子-中子相互作用玻色子模型SU(3)算法与简单应用[J]. 原子核物理评论, 2021, 38(4): 368-372. doi: 10.11804/NuclPhysRev.38.2021059
Baoyue HU, Yuqing WU, Wei TENG, Jing HU, Yu ZHANG. The SU(3) Algorithm and Simple Application of the Proton-neutron Interacting Boson Model[J]. Nuclear Physics Review, 2021, 38(4): 368-372. doi: 10.11804/NuclPhysRev.38.2021059
Citation: Baoyue HU, Yuqing WU, Wei TENG, Jing HU, Yu ZHANG. The SU(3) Algorithm and Simple Application of the Proton-neutron Interacting Boson Model[J]. Nuclear Physics Review, 2021, 38(4): 368-372. doi: 10.11804/NuclPhysRev.38.2021059

质子-中子相互作用玻色子模型SU(3)算法与简单应用

doi: 10.11804/NuclPhysRev.38.2021059
基金项目: 国家自然科学基金资助项目(11875158)
详细信息
    作者简介:

    胡宝越(1996–),女,辽宁朝阳人,硕士研究生,从事原子核结构研究

    通讯作者: 张宇,E-mail:dlzhangyu_physics@163.com
  • 中图分类号: O571.21

The SU(3) Algorithm and Simple Application of the Proton-neutron Interacting Boson Model

Funds: National Natural Science Foundation of China(11875158)
More Information
  • 摘要: 质子-中子相互作用玻色子模型(简称IBM-2)具有很好的壳模型微观基础,是描述中重质量偶偶核结构的标准模型之一。对比早期建立在弱耦合U(5)基底的NPBOS算法,本文介绍基于弱耦合SU(3)基底求解IBM-2模型哈密顿量的新算法结构,通过举例典型相互作用项在SU(3)基底下矩阵元说明如何利用SU(3)群代数技术求解IBM-2哈密顿量,并应用该算法求解常Q形式哈密顿量来拟合过渡区核素152, 154Sm低激发实验数据,提供了一个展示SU(3)算法可靠性和利用IBM-2描述过渡区核素的应用实例。
  • 图  1  152, 154Sm的低激发能级结构和相应IBM-2的计算结果

    其中,对于$^{152}\rm{Sm}$,IBM-2的参数取值为$\epsilon = 0.52$ MeV,$\kappa = -0.075$ MeV,$\bar{\chi}_\pi = -1.3$,$\bar{\chi}_\nu = -1.0$;对于$^{154}\rm{Sm}$,IBM-2的参数取值为$\epsilon = 0.45$ MeV,$\kappa = -0.085$ MeV,$\bar{\chi}_\pi = -1.3$,$\bar{\chi}_\nu = -1.2$,实验数据取自文献[12]。

    表  1  SU(3)张量$A^{(20)}$的三杠约化矩阵元[7]

    $\langle N+1(\lambda',\mu')\parallel\mid A^{(20)}\mid\parallel N(\lambda,\mu)\rangle$
    $\left.\begin{matrix}\lambda'=\lambda+2\\ \mu'=\mu\end{matrix}\right\}$$\left[\dfrac{(2N+2\lambda+\mu+12)(\lambda+2)(\lambda+\mu+3)}{6(\lambda'+1)(\lambda'+\mu'+2)}\right]^{\frac{1}{2}}$
    $\left.\begin{matrix}\lambda'=\lambda-2\\ \mu'=\mu+2\end{matrix}\right\}$$\left[\dfrac{(2N-\lambda+\mu+9)\lambda(\mu+2)}{6(\lambda'+1)(\mu'+1)}\right]^{\frac{1}{2}}$
    $\left.\begin{matrix}\lambda'=\lambda\\ \mu'=\mu-2\end{matrix}\right\}$$\left[\dfrac{(2N-\lambda-2\mu+6)\mu(\lambda+\mu+1)}{6(\lambda'+\mu'+2)(\mu'+1)}\right]^{\frac{1}{2}}$
    下载: 导出CSV

    表  2  典型四极跃迁几率$B({\rm E}2)$的实验数据(单位:W.u.)[12]与对应的IBM-2的计算结果,其中有效电荷对于$^{152}\mathrm{Sm}$$^{154}\mathrm{Sm}$分别取值为$e=0.145$$e=0.133$(单位:$\sqrt{\mathrm{W.u}}$),另外,“$-$”代表实验数据不确定

    $B(\mathrm{E}2;L_i\rightarrow L_f)$$^{152}\mathrm{Sm}$IBM-2$B(\mathrm{E}2;L_i\rightarrow L_f)$$^{154}\mathrm{Sm}$IBM-2
    $B(\mathrm{E}2;2_1\rightarrow 0_1)$145145$B(\mathrm{E}2;2_1\rightarrow 0_1)$176176
    $B(\mathrm{E}2;4_1\rightarrow 2_1)$209212$B(\mathrm{E}2;4_1\rightarrow 2_1)$245247
    $B(\mathrm{E}2;6_1\rightarrow 4_1)$240233$B(\mathrm{E}2;6_1\rightarrow 4_1)$289245
    $B(\mathrm{E}2;8_1\rightarrow 6_1)$293237$B(\mathrm{E}2;8_1\rightarrow 6_1)$319266
    $B(\mathrm{E}2;0_\beta\rightarrow 2_1)$3335$B(\mathrm{E}2;0_\beta\rightarrow 2_1)$126
    $B(\mathrm{E}2;2_\beta\rightarrow 2_1)$5.78.8$B(\mathrm{E}2;2_\beta\rightarrow 2_1)$<1.30.9
    $B(\mathrm{E}2;2_\gamma\rightarrow 2_1)$7.42.9$B(\mathrm{E}2;2_\gamma\rightarrow 2_1)$0.68
    $B(\mathrm{E}2;0_{\beta\beta}\rightarrow 2_1)$0.80.003$B(\mathrm{E}2;0_{\beta\beta}\rightarrow 2_1)$0.32
    下载: 导出CSV
  • [1] IACHELLO F, ARIMA A. The Interacting Boson Model[M], Cambridge: Cambridge Universitiy Press, 1987.
    [2] 刘玉鑫. 原子核物理评论, 2020, 37(3): 329. doi:  10.11804/NuclPhysRev.37.2019CNPC77

    LIU Y X. Nuclear Physics Review, 2020, 37(3): 329. (in Chinese) doi:  10.11804/NuclPhysRev.37.2019CNPC77
    [3] IACHELLO F, TALMI I. Reviews of Modern Physics, 1987, 59: 339. doi:  10.1103/RevModPhys.59.339
    [4] NOMURA K, SHIMIZU N, OTSUKA T. Physical Review Letter, 2009, 101: 142501. doi:  10.1103/PhysRevLett.101.142501
    [5] OTSUKA T, YOSHIDA N. User’s Manual of the Program NPBOS[R]. Tokyo: Japan Atomic Energy Research Institute, 1985.
    [6] DRAAYER J P, AKIYAMA Y. Journal of Mathematical Physics, 1973, 14: 1904. doi:  10.1063/1.1666267
    [7] ROSENSTEEL G. Physical Review C, 1990, 41: 730. doi:  10.1103/PhysRevC.41.730
    [8] 龙桂鲁, 孙洪洲. 高能物理与核物理, 1989, 13: 849.

    LONG G L, SUN H Z. High Energy Physics and Nuclear Physics, 1989, 13: 849. (in Chinese)
    [9] LIU Yuxin, SUN Hongzhou, LONG Guilu, et al. Cumputer Physics Communications, 1994, 81: 145. doi:  10.1016/0010-4655(94)90116-3
    [10] 胡静. 质子-中子相互作用玻色子模型新算法及其应用[D]. 大连: 辽宁师范大学, 2019.

    HU J. New Algorithm for the Proton-Neutron Interacting Boson model and Its Application[D]. Dalian: Liaoning Normal University, 2019. (in Chinese)
    [11] CAPRIO M, IACHELLO F. Physical Review Letter, 2004, 93: 242502. doi:  10.1103/PhysRevLett.93.242502
    [12] Brookhaven National Nuclear Data Center[EB/OL].[2021-07-30]. http://www.nndc.bnl.gov.
    [13] ZHANG Y, IACHELLO F. Physical Review C, 2017, 95: 034306. doi:  10.1103/PhysRevC.95.034306
    [14] BONATSOS D, MCCUTCHAN E A, CASTEN R F, et al. Physical Review Letter, 2008, 100: 142501. doi:  10.1103/PhysRevLett.100.142501
    [15] NOMURA K, ZHANG Y. Physical Review C, 2019, 99: 024324. doi:  10.1103/PhysRevC.99.024324
    [16] KOTILA J, NOMURA K, GUO L, et al. Physical Review C, 2012, 85: 054309. doi:  10.1103/PhysRevC.85.054309
  • 加载中
图(1) / 表 (2)
计量
  • 文章访问数:  636
  • HTML全文浏览量:  206
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-03
  • 修回日期:  2021-10-22
  • 刊出日期:  2021-12-20

质子-中子相互作用玻色子模型SU(3)算法与简单应用

doi: 10.11804/NuclPhysRev.38.2021059
    基金项目:  国家自然科学基金资助项目(11875158)
    作者简介:

    胡宝越(1996–),女,辽宁朝阳人,硕士研究生,从事原子核结构研究

    通讯作者: 张宇,E-mail:dlzhangyu_physics@163.com
  • 中图分类号: O571.21

摘要: 质子-中子相互作用玻色子模型(简称IBM-2)具有很好的壳模型微观基础,是描述中重质量偶偶核结构的标准模型之一。对比早期建立在弱耦合U(5)基底的NPBOS算法,本文介绍基于弱耦合SU(3)基底求解IBM-2模型哈密顿量的新算法结构,通过举例典型相互作用项在SU(3)基底下矩阵元说明如何利用SU(3)群代数技术求解IBM-2哈密顿量,并应用该算法求解常Q形式哈密顿量来拟合过渡区核素152, 154Sm低激发实验数据,提供了一个展示SU(3)算法可靠性和利用IBM-2描述过渡区核素的应用实例。

English Abstract

胡宝越, 吴宇晴, 滕威, 胡静, 张宇. 质子-中子相互作用玻色子模型SU(3)算法与简单应用[J]. 原子核物理评论, 2021, 38(4): 368-372. doi: 10.11804/NuclPhysRev.38.2021059
引用本文: 胡宝越, 吴宇晴, 滕威, 胡静, 张宇. 质子-中子相互作用玻色子模型SU(3)算法与简单应用[J]. 原子核物理评论, 2021, 38(4): 368-372. doi: 10.11804/NuclPhysRev.38.2021059
Baoyue HU, Yuqing WU, Wei TENG, Jing HU, Yu ZHANG. The SU(3) Algorithm and Simple Application of the Proton-neutron Interacting Boson Model[J]. Nuclear Physics Review, 2021, 38(4): 368-372. doi: 10.11804/NuclPhysRev.38.2021059
Citation: Baoyue HU, Yuqing WU, Wei TENG, Jing HU, Yu ZHANG. The SU(3) Algorithm and Simple Application of the Proton-neutron Interacting Boson Model[J]. Nuclear Physics Review, 2021, 38(4): 368-372. doi: 10.11804/NuclPhysRev.38.2021059
    • 20世纪70年代由Arima和Iachello提出的相互作用玻色子模型(简称IBM)[1]是继壳层模型和集体模型之后又一获得巨大成功的原子核结构模型,该模型被广泛用于描述中重质量区低激发核结构性质。IBM模型主要分为两类,分别是不区分质子中子的IBM-1模型和区分质子中子的IBM-2模型(即质子-中子相互作用玻色子模型)。相互作用玻色子模型强调核子的配对效应,认为原子核的低激发动力学主要由两类玻色子来描述,即$ l = 0 $$ s $玻色子和$ l = 2 $$ d $玻色子[2]。IBM-2模型是相互作用玻色子模型的微观版本,具有非常好的壳模型基础,又称为微观相互作用玻色子模型[3]。相比壳模型巨大的模型计算空间,IBM-2的模型空间相对要小得多,其玻色子的微观基础可以由Talmi提出的广义费米子的概念来解释[3],且IBM-2模型中常用的常Q形式哈密顿量也是基于此概念引出的。近年来,Nomura等[4]通过平均场计算来微观自洽地决定IBM-2模型的参数,进一步体现了该模型的微观特征。另外,相比于不区分质子中子的简单版本,IBM-2模型包含更为丰富的代数结构和动力学对称性,进而可用于描述核结构中更多类型集体激发模式[1]

      目前,求解一般形式IBM-2哈密顿量的算法程序主要是由Ostuka和Yoshida利用Fortran语言基于弱耦合U(5)基底开发的计算程序(名为NPBOS)[5]。虽然NPBOS程序是公开发表的,但对于很多具体问题的研究(例如多核子转移反应)需要对程序进行修改,然而由于IBM-2模型本身的复杂性,早期版本的NPBOS程序并不容易调试修改。因此,如能发展一个相对容易实现并方便调试的IBM-2新算法是很有必要并值得期待的。本文引入基于弱耦合SU(3)基底来计算IBM-2哈密顿量和跃迁算符矩阵元的算法方案,并通过一个IBM-2模型描述过渡区核素的简单应用来检验SU(3)算法。

    • 相互作用玻色子模型哈密顿量由两类玻色子算符来构造,即$ l^\pi = 0^+ $$ s $玻色子和$ l^\pi = 2^+ $$ d $玻色子,其分别对应原子核中角动量配成0和2的价核子对[1]。区分质子中子自由度的IBM-2模型则对应质子玻色子与中子玻色子的耦合系统,也就是说IBM-2包含质子玻色子和中子玻色子两个集合$ (\pi,\nu) $,每个集合的玻色子算符双线性积

      $$ G_{\alpha\beta}^{(\rho)} = b^\dagger_{\rho,\alpha}b_{\rho,\beta},\; (\alpha,\beta = 1,...,6;\; \rho = \pi,\nu) , $$ (1)

      有36个独立算符,生成最大动力学对称性群$ \mathrm{U}_\rho(6) $,进而意味着耦合系统具有直积群动力学对称性$ \mathrm{U}_\pi(6)\otimes \mathrm{U}_\nu(6) $。该直积群包含多条可以约化到角动量对称群SO(3)的动力学对称性极限[1],而每个对称性极限都能提供一组IBM-2模型的完备基底。其中,弱耦合SU(3)动力学对称性极限可以由群链

      $$ \begin{split} \mathrm{U}_\pi(6)\otimes& \mathrm{U}_\nu(6)\supset \mathrm{SU}_\pi(3)\otimes \mathrm{SU}_\nu(3)\supset\mathrm{SO}_\pi(3)\otimes\\ & \mathrm{SO}_\nu(3)\supset\mathrm{SO}(3)_{\pi+\nu}\supset \mathrm{SO}(2)_{\pi+\nu} \end{split} $$ (2)

      来标记,相应SU(3)基底可以构造为

      $$ \begin{split} \mid\alpha LM\rangle&\equiv|N_\pi(\lambda_\pi\mu_\pi)\chi_\pi L_\pi;N_\nu(\lambda_\nu\mu_\nu)\chi_\nu L_\nu;LM\rangle\\ & = \sum_{M_\pi( M_\nu)}\langle L_\pi M_\pi L_\nu M_\nu|LM\rangle\times \\ &|N_\pi(\lambda_\pi\mu_\pi)\chi_\pi L_\pi M_\pi\rangle|N_\nu(\lambda_\nu\mu_\nu)\chi_\nu L_\nu M_\nu\rangle \end{split}, $$ (3)

      其中:$ N_\rho,\; (\lambda_\rho,\; \mu_\rho),\; L_\rho,\; M_\rho $分别是代表U(6), SU(3), SO(3), SO(2)群不可约表示的量子数,而$ \chi_\rho $为SU(3)约化到SO(3)的附加量子数。对于给定原子核系统,质子玻色子数$ N_\pi $与中子玻色子数$ N_\nu $以及总角动量$ L $是一定的。给定$ N_\rho $后,可由下式计算$ (\lambda_\rho,\mu_\rho) $

      $$ \begin{split} (\lambda,\mu) = &(2N,0)\oplus(2N-4,2)\oplus(2N-8,4)\oplus...\\ &\oplus(2N-6,0)\oplus(2N-10,2)\oplus...\\ &\oplus(2N-12,0)\oplus(2N-16,2)\oplus...\\ &\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \vdots\;\quad , \end{split} $$ (4)

      其中:$ \lambda $$ \mu $的值必须是大于等于零的偶数。进一步考虑SU(3)约化到角动量代数SO(3)是有重复度的,需要一个附加量子数来表征重复度。附加量子数最简单和直观的选择来自于Elliott方法,对应的量子数称为$ K $,即角动量在内禀坐标系的三分量投影,进而每个表示$ (\lambda,\mu) $包含的$ L $值可如下得出:

      $$ \begin{split} K = &\mathrm{min}({\lambda,\mu}),\; \; \mathrm{min}({\lambda,\mu})-2,\ldots,0,\\ K>&0,\; \; L = K,K+1,\ldots,K+\mathrm{max}({\lambda,\mu}),\\ K = &0,\; \; L = 0,\; 2,\; 4,\ldots,\mathrm{max}({\lambda,\mu})\text{。} \end{split} $$ (5)

      但是$ K $作为附加量子数的SU(3)基底不是正交的,本文采用的是正交的Draayer-Akiyama SU(3)基底[6],其附加量子数为式(3)所示的$ \chi $。进一步,$ s,\; d $玻色子的产生湮灭算符可以分别写成$ \mathrm{SU(3)}\supset \mathrm{SO(3)} $下的张量形式$ A_l^{(2,0)} $$ B_{l}^{(0,2)} $[7],具体可以写作:

      $$ \begin{split}& s^\dagger = A_0^{(20)},\; \; \tilde{s} = B_0^{(02)},\\& d^\dagger = A_2^{(20)},\; \; \tilde{d} = B_2^{(02)}\, , \end{split} $$ (6)

      其中湮灭算符的球张量形式定义为

      $$ \begin{align} \tilde{b}_{lm} = {(-1)}^{l-m}b_{l,-m}\text{。} \end{align} $$ (7)

      当SU(3)基底定下来后,就可以利用SU(3)算法来构造耦合系统的哈密顿量矩阵,并通过对角化方案来求解哈密顿量的本征值和本征波函数。接下来,我们以质子-中子四极四极相互作用中的一项

      $$ (d_\pi^\dagger\times \tilde{d_\pi})^2\boldsymbol\cdot(d_\nu^\dagger\times \tilde{d_\nu})^2 $$ (8)

      为例说明如何利用SU(3)算法来计算IBM-2模型哈密顿量矩阵元。利用张量积矩阵元公式可以证明

      $$ \begin{split} &\langle\alpha_bLM\mid(d_\pi^\dagger\times \tilde{d_\pi})\boldsymbol\cdot(d_\nu^\dagger\times \tilde{d_\nu})^2\mid\alpha_aLM\rangle\\ = &5(-1)^{L_{\pi b}+L_{\nu a}+L}\sum_{\lambda_{1,2}\mu_{1,2}\chi_{1,2}L_{1,2}}\left\{\begin{array}{ccc}L_{\pi b}\; L_{\nu b}\; L \\ L_{\nu a}\; L_{\pi a}\; 2\end{array} \right\}\times\\ & \left\{\begin{array}{ccc}2\; \; \; \; 2\; \; \; \; 2 \\ L_{\pi a}\; L_{\pi b}\; L_1\end{array} \right\}\left\{\begin{array}{ccc}2\; \; \; \; 2\; \; \; \; 2 \\ L_{\nu a}\; L_{\nu b}\; L_2\end{array} \right\}\times\\[1mm] &\sqrt{2L_{\pi b}+1}\sqrt{2L_1+1}\sqrt{2L_{\nu b}+1}\sqrt{2L_2+1}\times\\[1mm] &\langle(\lambda_1\mu_1)\chi_1L_1;(20)12\parallel(\lambda_{\pi b}\mu_{\pi b})\chi_{\pi b}L_{\pi b}\rangle\times\\[1mm] &\langle(\lambda_{\pi a}\mu_{\pi a})\chi_{\pi a}L_{\pi a};(02)12\parallel(\lambda_{1}\mu_{1})\chi_{1}L_{1}\rangle\times\\[1mm] &\langle(\lambda_2\mu_2)\chi_2L_2;(20)12\parallel(\lambda_{\nu b}\mu_{\nu b})\chi_{\nu b}L_{\nu b}\rangle\times\\[1mm] &\langle(\lambda_{\nu a}\mu_{\nu a})\chi_{\nu a}L_{\nu a};(02)12\parallel(\lambda_{2}\mu_{2})\chi_{2}L_{2}\rangle\times\\[1mm] &\langle N_\pi(\lambda_{\pi b}\nu_{\pi b})\parallel\mid A^{(20)}\parallel\mid N_\pi-1(\lambda_1\mu_1)\rangle\times\\[1mm] &\langle N_\pi-1(\lambda_{1}\mu_{1})\parallel\mid B^{(02)}\parallel\mid N_\pi(\lambda_{\pi a}\mu_{\pi a})\rangle\times\\[1mm] &\langle N_\nu(\lambda_{\nu b}\mu_{\nu b})\parallel\mid A^{(20)}\parallel\mid N_\nu-1(\lambda_2\mu_2)\rangle\times\\[1mm] &\langle N_\nu-1(\lambda_{2}\nu_{2})\parallel\mid B^{(02)}\parallel\mid N_\nu(\lambda_{\nu a}\mu_{\nu a})\rangle\text{。} \end{split} $$ (9)

      可以看到,该相互作用项在SU(3)基底下的矩阵元最终可以分解成几个单玻色子约化矩阵元以及相应CG系数乘积。IBM-2模型哈密顿量其它相互作用项在SU(3)基底下的矩阵元可以类似给出。矩阵元具体计算程序可以利用Mathematica软件5.0以上版本来编辑,其中6-$ j $系数可以由Mathematica软件的SixJSymbol命令直接计算,而$ \mathrm{SU(3)}\supset \mathrm{SO(3)} $CG系数(同位标量因子)可以利用Draayer-Akiyama算法程序来计算生成[6]$ A^{(20)} $的三杠矩阵元[7]已经在表1中给出,相应$ B^{(02)} $的三杠矩阵元可以利用产生湮灭算符的厄密性质通过$ A^{(20)} $的三杠矩阵元得到[7]。考虑到SU(3)基底中的$ \lambda,\; \mu $均为为偶数,具体公式如下:

      表 1  SU(3)张量$A^{(20)}$的三杠约化矩阵元[7]

      $\langle N+1(\lambda',\mu')\parallel\mid A^{(20)}\mid\parallel N(\lambda,\mu)\rangle$
      $\left.\begin{matrix}\lambda'=\lambda+2\\ \mu'=\mu\end{matrix}\right\}$$\left[\dfrac{(2N+2\lambda+\mu+12)(\lambda+2)(\lambda+\mu+3)}{6(\lambda'+1)(\lambda'+\mu'+2)}\right]^{\frac{1}{2}}$
      $\left.\begin{matrix}\lambda'=\lambda-2\\ \mu'=\mu+2\end{matrix}\right\}$$\left[\dfrac{(2N-\lambda+\mu+9)\lambda(\mu+2)}{6(\lambda'+1)(\mu'+1)}\right]^{\frac{1}{2}}$
      $\left.\begin{matrix}\lambda'=\lambda\\ \mu'=\mu-2\end{matrix}\right\}$$\left[\dfrac{(2N-\lambda-2\mu+6)\mu(\lambda+\mu+1)}{6(\lambda'+\mu'+2)(\mu'+1)}\right]^{\frac{1}{2}}$
      $$ \begin{split} &\big\langle N(\lambda,\mu)\parallel\mid B^{(02)}\mid\parallel N+1(\lambda^\prime,\mu^\prime)\big\rangle = \; \; \; \; \\ & \sqrt{\frac{(\lambda^\prime+1)(\mu^\prime+1)(\lambda^\prime+\mu^\prime+2)} {(\lambda+1)(\mu+1)(\lambda+\mu+2)}}\times\\ &\big\langle N+1(\lambda^\prime,\mu^\prime)\parallel\mid A^{(20)}\mid\parallel N(\lambda,\mu)\big\rangle\text{。} \end{split} $$ (10)

      一般来说,IBM-2模型在各个动力学对称性极限下的能谱和电磁跃迁几率可以利用群论方法解析求解,进而可以通过对比数值计算来检验相应计算程序。因IBM的各个动力学对称性极限可以用群链来标记和分类[1],该方法可称为群链方法,曾被用来对IBM-2的原有计算程序NPBOS进行检验和校正[8-9]. 下面我们采用该方法,利用IBM-2中的一个典型动力学对称性极限下的例子来检验本文提出的SU(3)算法计算,该极限由下面群链来标记[1]:

      $$ \begin{align} \mathrm{U}_\pi(6)\otimes &\mathrm{U}_\nu(6)\supset \mathrm{U}(6)_{\pi+\nu}\supset \mathrm{O}(6)_{\pi+\nu}\supset\\ &\mathrm{O}(5)_{\pi+\nu}\supset\mathrm{SO}(3)_{\pi+\nu}\supset \mathrm{SO}(2)_{\pi+\nu}\text{。} \end{align} $$ (11)

      该极限下的哈密顿量的一般形式由群链中各个子群G的Casimir算符$ \hat{C}_k[\mathrm{G}] $的线性组合来构造,相应本征矢量可以表示为

      $$ \begin{align} |[N_\pi],[N_\nu],[N_1,N_2],(\sigma_1,\sigma_2),(\tau_1,\tau_2),\tilde{\nu}_\Delta;LM\rangle\text{。} \end{align} $$ (12)

      其中:$ (N_1,\; N_2) $, $ (\sigma_1,\; \sigma_2),\; (\tau_1,\; \tau_2) $分别是$ \mathrm{U(6)}_{\pi+\nu} $及其子群$ \mathrm{O(5)}_{\pi+\nu} $, $ \mathrm{O(5)}_{\pi+\nu} $的不可约表示量子数;$ \tilde{\nu}_\Delta $是附加量子数[1]。为了简单起见,我们考虑该极限下四极相互作用哈密顿量形式

      $$ \begin{align} &\hat{H} = \alpha(\hat{Q}_{\pi+\nu})\boldsymbol\cdot(\hat{Q}_{\pi+\nu})\\ &\; \; \; = \alpha\{\hat{C}_2[\mathrm{O}(6)_{\pi+\nu}]-\hat{C}_2[\mathrm{O}(5)_{\pi+\nu}]\}\, , \end{align} $$ (13)

      其中:$ \alpha $是可调参数;四极矩算符定义为$ \hat{Q}_{\pi+\nu} = $$ \sum_{\rho = \pi,\nu}(s_\rho^\dagger\times\tilde{d}_\rho+ d_\rho^\dagger\times \tilde{s}_\rho)^2 $。利用群论方法,该极限下哈密顿量的能谱可以解析表示为[1]

      $$ E = \alpha[\sigma_1(\sigma_1+4)+\sigma_2(\sigma_2+2)-\tau_1(\tau_1+3)-\tau_2(\tau_2+1)]\text{。} $$ (14)

      对于基态和第一激发态有$N_1 = N_\pi+N_\nu,\; N_2 = 0,\; \sigma_1 = $$ N_\pi+N_\nu,\; \sigma_2 = 0,\; \tau_2 = 0 $以及$ \tau_1 = 0,\; 1 $,相应本征态矢量可以表示为[1]

      $$ \begin{align} |0_1^+\rangle = |[N_\pi],[N_\nu],[N,0],(N,0),(0,0),0;0\rangle, \end{align} $$ (15)
      $$ \begin{align} |2_1^+\rangle = |[N_\pi],[N_\nu],[N,0],(N,0),(1,0),0;2\rangle\, , \end{align} $$ (16)

      其中$ N = N_\pi+N_\nu $。为了讨论方便,我们暂且把态矢量中的角动量三分量量子数$ M $忽略。另一方面,我们也可以利用前面讨论的SU(3)算法来数值求解(13)中的哈密顿量。在质子玻色子数$ N_\pi = 5 $和中子玻色子数$ N_\nu = 5 $的情况下,当取参数$ \alpha = -1 $时,可以得到基态和第一激发态的能量本征值(单位任意)

      $$ \begin{align} E(0_1^+) = -104,\; \; \; E(2_1^+) = -100\text{。} \end{align} $$ (17)

      相应本征矢量可以通过SU(3)基底

      $$ \begin{align} |N_\pi(\lambda_\pi\mu_\pi)\chi_\pi L_\pi;N_\nu(\lambda_\nu\mu_\nu)\chi_\nu L_\nu;L\rangle\, \end{align} $$ (18)

      展开为[10]

      $$ \begin{split} \mid0_1^+\rangle = &-0.3340\mid5(10,0)10;5(10,0)10;0\rangle\\ &-0.2051\mid5(10,0)10;5(6,2)10;0\rangle\\ &+0.1418\mid5(10,0)10;5(2,4)10;0\rangle+...\,, \end{split} $$ (19)
      $$ \begin{split} \mid2_1^+\rangle = &-0.2819\mid5(10,0)10;5(10,2)12;2\rangle\\ &-0.1535\mid5(10,0)10;5(6,2)12;2\rangle\\ &-0.1357\mid5(10,0)10;5(4,0)12;2\rangle+...\,, \end{split} $$ (20)

      可以看到,$ \mathrm{O(6)}_{\pi+\nu} $极限下的本征态是各种SU(3)不可约表示$ (\lambda,\mu) $成分的复杂混合。容易验证,利用SU(3)算法得到的式(17)中的能量数值结果与解析式(14)的结果完全一致,进而肯定了SU(3)算法的准确性。进一步计算表明,利用SU(3)算法可以精确再现该极限下所有其它激发态的能量本征值,更多利用群链方法检验SU(3)算法的数值结果可以参考[10]。需要强调是,除了特定对称性极限,一般情形下的IBM-2哈密顿量是没有解析解的。

    • 为了进一步检验SU(3)算法并给出IBM-2一个应用例子,我们利用该算法求解了IBM-2常Q形式哈密顿量[11],据此来描述152, 154Sm的低激发性质[12]。具体哈密顿量形式如下:

      $$ \begin{align} \hat{H}_{\mathrm{CQ}} = \epsilon(\hat{n}_{d_\pi}+\hat{n}_{d_\nu})+ \kappa\hat{Q}_\pi^{\bar{\chi}_\pi}\boldsymbol\cdot\hat{Q}_\nu^{\bar{\chi}_\nu}\,, \end{align} $$ (21)

      其中,$\hat{n}_{d_\rho} = d_\rho^\dagger\boldsymbol\cdot\tilde{d}_\rho$为质子或中子$ d $玻色子数算符,$ \hat{Q}_\rho = (s_\rho^\dagger\times\tilde{d}_\rho+ d_\rho^\dagger\times \tilde{s}_\rho)^2+\bar{\chi}_\rho(d_\rho^\dagger\times\tilde{d}_\rho)^2 $为质子或中子四极矩算符,而$ \epsilon,\; \kappa,\; \bar{\chi}_\rho $代表相应可调参数。电四极跃迁几率计算可采用如下跃迁算符;

      $$ \begin{align} T(\text{E}2) = e(\hat{Q}_\pi^{\bar{\chi}_\pi}+\hat{Q}_\nu^{\bar{\chi}_\nu})\, , \end{align} $$ (22)

      其中$ e $代表有效电荷。初态$ \mid\alpha_iL_i\rangle $与末态$ \mid\alpha_fL_f\rangle $之间的电四极跃迁几率$ B({\rm E}2) $由如下公式计算给出:

      $$ \begin{align} B(\text{E}2;L_i\rightarrow L_f) = \frac{\mid\langle\alpha_fL_f\parallel T(\text{E}2)\parallel\alpha_iL_i\rangle\mid^2}{2L_i+1}\text{。} \end{align} $$ (23)

      容易得知,除了求解哈密顿量,还可以利用上面讨论的SU(3)算法推导四极算符矩阵元来计算$ B({\rm E}2) $,关于SU(3)算法的更多细节可以参考文献[10]。下面我们将具体计算结果在图1中给出,其中,左侧是152Sm和154Sm低激发能级实验数据,右边是相应的IBM-2的计算结果。典型的电四极跃迁几率$ B({\rm E}2) $的实验数据和IBM-2计算结果在表2中给出。

      图  1  152, 154Sm的低激发能级结构和相应IBM-2的计算结果

      表 2  典型四极跃迁几率$B({\rm E}2)$的实验数据(单位:W.u.)[12]与对应的IBM-2的计算结果,其中有效电荷对于$^{152}\mathrm{Sm}$$^{154}\mathrm{Sm}$分别取值为$e=0.145$$e=0.133$(单位:$\sqrt{\mathrm{W.u}}$),另外,“$-$”代表实验数据不确定

      $B(\mathrm{E}2;L_i\rightarrow L_f)$$^{152}\mathrm{Sm}$IBM-2$B(\mathrm{E}2;L_i\rightarrow L_f)$$^{154}\mathrm{Sm}$IBM-2
      $B(\mathrm{E}2;2_1\rightarrow 0_1)$145145$B(\mathrm{E}2;2_1\rightarrow 0_1)$176176
      $B(\mathrm{E}2;4_1\rightarrow 2_1)$209212$B(\mathrm{E}2;4_1\rightarrow 2_1)$245247
      $B(\mathrm{E}2;6_1\rightarrow 4_1)$240233$B(\mathrm{E}2;6_1\rightarrow 4_1)$289245
      $B(\mathrm{E}2;8_1\rightarrow 6_1)$293237$B(\mathrm{E}2;8_1\rightarrow 6_1)$319266
      $B(\mathrm{E}2;0_\beta\rightarrow 2_1)$3335$B(\mathrm{E}2;0_\beta\rightarrow 2_1)$126
      $B(\mathrm{E}2;2_\beta\rightarrow 2_1)$5.78.8$B(\mathrm{E}2;2_\beta\rightarrow 2_1)$<1.30.9
      $B(\mathrm{E}2;2_\gamma\rightarrow 2_1)$7.42.9$B(\mathrm{E}2;2_\gamma\rightarrow 2_1)$0.68
      $B(\mathrm{E}2;0_{\beta\beta}\rightarrow 2_1)$0.80.003$B(\mathrm{E}2;0_{\beta\beta}\rightarrow 2_1)$0.32

      考虑到质子的50~82壳层和中子的82~126壳层,154Sm(152Sm)共包含12个价质子与10(8)个价中子,这样大的价壳空间下严格壳模型计算是很难实现的,而在IBM-2框架下,利用SU(3)算法可以相对容易地得到同样价核子情形下IBM-2模型哈密顿量的本征值和本征函数。从图1中可以观察到,152Sm和154Sm的基态带激发序列在IBM-2模型中得到很好的理论再现,而且两个过渡区核素的$ \beta $带和$ \gamma $带甚至第二个$ \beta $带的带头位置和带内激发序列也基本符合IBM-2的描述。其中,154Sm的$ 0^+_3 $态能量的实验值约为1.2 MeV,IBM-2的计算结果约为1.4 MeV,而之前IBM-1最好的$ 0^+_3 $态拟合结果也要接近2 MeV[13]。虽然IBM-2计算结果也比实验值要高一些,但明显好于IBM-1的计算结果。一般来讲,由于侵入态(intruder states)的影响,较大形变核的$ 0^+ $激发态性质不容易准确描述,但具有更丰富的组态模式的IBM-2对于更高$ 0^+ $激发态的描述要明显好于IBM-1,这一点对于进一步应用IBM-2描述不同核$ 0^+ $态之间的转移过程非常重要。另外值得强调的一点,一般认为152Sm是球形到长椭球形状相变中的典型临界点核素,而临界点核一个明显特征就是有近似简并$ 6_1^+ $态和$ 0_2^+ $[14]。从图1中可以明确看到,IBM-2模型的计算在给出了152Sm低激发能级结构非常好的整体描述同时,也精准地再现了该临界点核中$ E(6_1^+)\simeq E(0_2^+) $这个临界特征。

      进一步从表2中可以看到,152Sm和154Sm有关电四极跃迁几率的实验数据与IBM-2的计算结果也基本符合,特别是实验上较强的带内跃迁和较弱的带间跃迁特征均可以在IBM-2中很好地再现;其中,154Sm中$ \beta $带到基态带的带间跃迁值相比相邻的152Sm中同样跃迁显著减弱这个变化也在IBM-2的计算中得到很好描述。这些结果进一步肯定了IBM-2模型对这两个过渡区核素的集体性质的理论解释。需要提及的是,本文采用的参数与文献[15]中IBM-2哈密顿量的对应参数基本一致(除了对154Sm的计算中$ \bar{\chi}_\pi $从–1.2略有微调至–1.3),而该文献中的IBM-2计算是利用NPBOS程序得到的,进而说明了本文所采用的SU(3)算法计算的可靠性。

    • 质子-中子相互作用玻色子模型(IBM-2)是描述中重质量原子核低激发性质的标准模型之一[1],也是少有的能系统地描述重核集体结构且具有牢固微观基础的核结构模型。近年来,IBM-2模型更是被成功应用于描述各种原子核形状演化过程[16],很好地解释了稀土区核素在两核子转移过程中的形状相变现象[15]。然而,如果进一步应用于研究诸如多核子转移,$ \alpha $衰变和$ \beta $衰变等其它复杂核反应过程,需要对现有IBM-2模型计算方案进一步扩充和发展。原有求解IBM-2的算法程序NPBOS是在20世纪80年代中期建立起来的[5],在进一步应用和调试过程中有很多不方便和不确定的地方,本文介绍了如何利用SU(3)群代数技术在弱耦合SU(3)基底下对角化求解IBM-2模型哈密顿量的算法结构,并通过O(6)极限下的一个简单例子检验了该算法的准确性。进一步,通过利用新算法求解常Q哈密顿量并应用于描述过渡区核素152, 154Sm的低激发结构,展示了IBM-2模型描述过渡区核素的模型效果,也进一步肯定了SU(3)算法的可靠性,为今后在IBM-2框架下研究重核的多核子转移反应和其它核反应过程奠定了基础。

参考文献 (16)

目录

    /

    返回文章
    返回