Advanced Search

WU Qianghua, ZHANG Yingxun, XIAO Zhigang, WANG Rensheng, ZHANG Yan, LI Zhuxia, WANG Ning. Relation Between the Angular Anisotropy of Coalescence Invariant Neutron to Proton Ratio and the Symmetry Energy in Asymmetric Heavy Ion Collisions[J]. Nuclear Physics Review, 2016, 33(3): 251-257. doi: 10.11804/NuclPhysRev.33.03.251
Citation: WU Qianghua, ZHANG Yingxun, XIAO Zhigang, WANG Rensheng, ZHANG Yan, LI Zhuxia, WANG Ning. Relation Between the Angular Anisotropy of Coalescence Invariant Neutron to Proton Ratio and the Symmetry Energy in Asymmetric Heavy Ion Collisions[J]. Nuclear Physics Review, 2016, 33(3): 251-257. doi: 10.11804/NuclPhysRev.33.03.251

Relation Between the Angular Anisotropy of Coalescence Invariant Neutron to Proton Ratio and the Symmetry Energy in Asymmetric Heavy Ion Collisions

doi: 10.11804/NuclPhysRev.33.03.251
Funds:  National Nature Science Foundation of China(11475262, 11275052, 11422548, 11375062, 11375094, 11365004); National Basic Research Program of China (973 Program)(2013CB834404)
  • Received Date: 2016-01-14
  • Rev Recd Date: 2016-03-04
  • Publish Date: 2016-09-20
  • By using the ImQMD05 code,we simulate the 40Ar+197Au,+124Sn at beam energy of 35,50 and 100 MeV/u and semi-peripheral collisions.The reaction mechanism,symmetry potential and Coulomb potential competition around the overlapped neck region and impact parameters effects are investigated for understanding the angular distribution of isospin contents of dynamical emitted light particles.Our results show that the angular anisotropy of the coalescence invariant neutron to proton yield ratios is sensitive to the stiffness of symmetry energy,especially for the dynamical emitted light particles with Ek>10 MeV.
  • [1] WARDA M,VIÑAS X,ROCA-MAZA X,et al.Phys Rev C,2010,81:054309.
    [2] CHEN L W,KO CHE M,LI B A,et al.Phys Rev C,2010,82:024321.
    [3] GAIDAROV M K,ANTONOV A N,SARRIGUREN P,et al.Phys Rev C,2012,85:064319.
    [4] DONG J M,ZUO W,GU J Z.Phys Rev C,2013,87:014303.
    [5] ZHANG Y X,DANIELEWICZ P,FAMIANO M,et al.Phys Lett B,2008,664:145.
    [6] TSANG M B,ZHANG Y X,DANIELEWICZ P,et al.Phys Rev Lett,2009,102:122701.
    [7] KUMAR S,MA Y G,ZHANG G Q,et al.Phys Rev C,2011,84:044620.
    [8] ZHANG Y X,COUPLAND D D S,DANIELEWICZ P,et al.Phys Rev C,2012,85:024602.
    [9] ZHANG Y X,TSANG M B,LI Z X,et al.Phys Lett B,2014,732:186.
    [10] STEINER A W,GANDOLFI S.Phys Rev Lett,2012,108:081102.
    [11] TAKAMI K,REZZOLLA L,BAIOTTI L.Phys Rev Lett,2014,113:091104.
    [12] LATTIMER J M,PETHICK C J,PRAKASH M,et al.Phys Rev Lett,1991,66:2701.
    [13] SIEMENS P J.Nucl Phys A,1970,141:225.
    [14] VAUTHERIN D,BRINK D M.Phys Rev C,1976,3:626.
    [15] DANIELEWICZ P,LACEY R,LYNCH W G.Science,2002,298:1592.
    [16] AMORINI F,CARDELLA G,GIULIANI G,et al.Phys Rev Lett,2009,102:112701.
    [17] RUSSOTTO P,de FILIPPO E,PAGANO A,et al.Phys Rev C,2010,81:064605.
    [18] HUDAN S,MCINTOSH A B,de SOUZA R T,et al.Phys Rev C,2012,86:021603.
    [19] WANG R S,ZHANG Y,XIAO Z G,et al.Phys Rev C,2014,89:064613.
    [20] TSANG M B,STONE J R,CAMERA F,et al.Phys Rev C,2012,86:015803.
    [21] LATTIMER J M,STEINER A W.Eur Phys J A,2014,50:40.
    [22] TSANG M B,LIU T X,SHI L,et al.Phys Rev Lett,2004,92:062701.
    [23] HOMBACH A,CASSING W,MOSEL U.Eur Phys J A,1999,5:77.
    [24] KOHLEY Z,MAY L W,WUENSCHEL S,et al.Phys Rev C,2011,83:044601.
    [25] ZHANG Y X,COUPLAND D D S,DANIELEWICZ P,et al.Phys Rev C,2012,85:024602.
    [26] LI B A,DANIELEWICZ P,LYNCH W G.Phys Rev C,2005,71:054603.
    [27] de FILIPPO E,PAGANO A,RUSSOTTO P,et al.Phys Rev C,2012,86:014610.
    [28] de FILIPPO E,PAGANO A,RUSSOTTO P,et al.Phys Rev Lett,2009,102:112701.
    [29] COLIN J,CUSSOL D,NORMAND J,et al.Phys Rev C,2003,67:064603.
    [30] ZHANG Y X,LU X H,ZHAO K,et al.Nuclear Physics Review,2011,28(4):377.(in Chinese)(张英逊,卢晓华,赵凯,等.原子核物理评论,2011,28(4):377)
    [31] BARAN V,COLONNA M,di TORO M.Nucl Phys A,2004,730:329.
    [32] ZHANG Yingxun,LI Zhuxia.Phys Rev C,2005,71:024604.
    [33] LI B A,KO C M,REN Z.Phys Rev Lett,1997,78:1644.
    [34] WU Q H,ZHANG Y X,XIAO Z G,et al.Phys Rev C,2015,91:014617.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1313) PDF downloads(170) Cited by()

Proportional views

Relation Between the Angular Anisotropy of Coalescence Invariant Neutron to Proton Ratio and the Symmetry Energy in Asymmetric Heavy Ion Collisions

doi: 10.11804/NuclPhysRev.33.03.251
Funds:  National Nature Science Foundation of China(11475262, 11275052, 11422548, 11375062, 11375094, 11365004); National Basic Research Program of China (973 Program)(2013CB834404)

Abstract: By using the ImQMD05 code,we simulate the 40Ar+197Au,+124Sn at beam energy of 35,50 and 100 MeV/u and semi-peripheral collisions.The reaction mechanism,symmetry potential and Coulomb potential competition around the overlapped neck region and impact parameters effects are investigated for understanding the angular distribution of isospin contents of dynamical emitted light particles.Our results show that the angular anisotropy of the coalescence invariant neutron to proton yield ratios is sensitive to the stiffness of symmetry energy,especially for the dynamical emitted light particles with Ek>10 MeV.

WU Qianghua, ZHANG Yingxun, XIAO Zhigang, WANG Rensheng, ZHANG Yan, LI Zhuxia, WANG Ning. Relation Between the Angular Anisotropy of Coalescence Invariant Neutron to Proton Ratio and the Symmetry Energy in Asymmetric Heavy Ion Collisions[J]. Nuclear Physics Review, 2016, 33(3): 251-257. doi: 10.11804/NuclPhysRev.33.03.251
Citation: WU Qianghua, ZHANG Yingxun, XIAO Zhigang, WANG Rensheng, ZHANG Yan, LI Zhuxia, WANG Ning. Relation Between the Angular Anisotropy of Coalescence Invariant Neutron to Proton Ratio and the Symmetry Energy in Asymmetric Heavy Ion Collisions[J]. Nuclear Physics Review, 2016, 33(3): 251-257. doi: 10.11804/NuclPhysRev.33.03.251
Reference (34)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return