Advanced Search
Volume 34 Issue 1
Jan.  2017
Turn off MathJax
Article Contents

LI Jianfeng. Effect of Fermion Velocity on Fermion Chiral Condensate in QED3 at Finite Temperature[J]. Nuclear Physics Review, 2017, 34(1): 16-19. doi: 10.11804/NuclPhysRev.34.01.016
Citation: LI Jianfeng. Effect of Fermion Velocity on Fermion Chiral Condensate in QED3 at Finite Temperature[J]. Nuclear Physics Review, 2017, 34(1): 16-19. doi: 10.11804/NuclPhysRev.34.01.016

Effect of Fermion Velocity on Fermion Chiral Condensate in QED3 at Finite Temperature

doi: 10.11804/NuclPhysRev.34.01.016
Funds:  National Natural Science Foundation of China (11105112, 11347212)
  • Received Date: 2016-09-21
  • Publish Date: 2017-03-20
  • Analogous to Quantum QCD, QED3 has two interesting features: dynamical chiral symmetry breaking (DCSB) and confinement. By adopting the rainbow approximation, we numerically solve the fermion self-energy equation at finite temperature in the framework of Dyson-Schwinger equations and discuss the relation between chiral condensate and fermion flavor for several fermion velocities in the finite temperature QED3. It is found that the fermion chiral condensate decreases monotonically with the fermion velocity increasing for a fixed N at finite temperature.
  • [1] PISARSKI R D. Phys Rev D, 1984, 29: 2423.
    [2] BURDEN C J, PRASCHIFKA J, ROBERTS C D. Phys Rev D, 1992, 46: 2695.
    [3] MARIS P. Phys Rev D, 1995, 52: 6087.
    [4] MARIS P. Phys Rev D, 1996, 54: 4049.
    [5] BASHIR A, RAYA A, CLOET I C, et al. Phys Rev C, 2008, 78: 055201.
    [6] FENG H T, WANG B, SUN W M, et al. Phys Rev D, 2012, 86: 105042.
    [7] RANTNER W, WEN X G. Phys Rev Lett, 2001, 86: 3871.
    [8] RANTNER W, WEN X G. Phys Rev B, 2002, 66: 144501.
    [9] FRANZ M, TESANOVIC Z. Phys Rev Lett, 2001, 87: 257003.
    [10] LIU G Z, CHENG G. Phys Rev D, 2003, 67: 065010.
    [11] HERBUT I F. Phys Rev Lett, 2002, 88: 047006.
    [12] HERBUT I F. Phys Rev B, 2002, 66: 094504.
    [13] LEE P A, NAGAOSA N, WEN X G. Rev Mod Phys, 2006, 78: 17.
    [14] KHVESHCHENKO D V. Phys Rev Lett, 2001, 87: 246802.
    [15] KHVESHCHENKO D V, LEAL H. Nucl Phys B, 2004, 687: 323.
    [16] NAMBU Y, LASINIO G J. Phys Rev, 1961, 122: 345.
    [17] APPELQUIST T W, BOWICK M, KARABALI D, et al. Phys Rev D, 1986, 33: 3704.
    [18] NASH D. Phys Rev Lett, 1989, 62: 3024.
    [19] AITCHISON I J R, DOREY N, KLEIN-KREISLER M, et al. Phys Lett B, 1992, 294: 91.
    [20] CHIAO M, HILL R W, LUPIEN C, et al. Phys Rev B, 2000, 62: 3554.
    [21] DOREY N, MAVROMATOS N E. Nucl Phys B, 1992, 386: 614.
    [22] CONCHA A, STANEV V, TESANOVIC Z, Phys Rev B, 2009, 79: 214525.
    [23] LEE D J, HERBUT I F. Phys Rev B, 2002, 66: 094512.
    [24] SCHWINGER J. Phys Rev, 1962, 128: 2425.
    [25] LI J F, HOU F Y, CUI Z F, et al. Phys Rev D, 2014, 90: 073013.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1528) PDF downloads(115) Cited by()

Proportional views

Effect of Fermion Velocity on Fermion Chiral Condensate in QED3 at Finite Temperature

doi: 10.11804/NuclPhysRev.34.01.016
Funds:  National Natural Science Foundation of China (11105112, 11347212)

Abstract: Analogous to Quantum QCD, QED3 has two interesting features: dynamical chiral symmetry breaking (DCSB) and confinement. By adopting the rainbow approximation, we numerically solve the fermion self-energy equation at finite temperature in the framework of Dyson-Schwinger equations and discuss the relation between chiral condensate and fermion flavor for several fermion velocities in the finite temperature QED3. It is found that the fermion chiral condensate decreases monotonically with the fermion velocity increasing for a fixed N at finite temperature.

LI Jianfeng. Effect of Fermion Velocity on Fermion Chiral Condensate in QED3 at Finite Temperature[J]. Nuclear Physics Review, 2017, 34(1): 16-19. doi: 10.11804/NuclPhysRev.34.01.016
Citation: LI Jianfeng. Effect of Fermion Velocity on Fermion Chiral Condensate in QED3 at Finite Temperature[J]. Nuclear Physics Review, 2017, 34(1): 16-19. doi: 10.11804/NuclPhysRev.34.01.016
Reference (25)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return