Advanced Search
Volume 34 Issue 1
Jan.  2017
Turn off MathJax
Article Contents

Ana Ivanova Georgieva, Kalin Pavlov Drumev. Correlations of the SO(8) Pairing and SU(3) Quadrupole Bases in the Algebraic Shell Model[J]. Nuclear Physics Review, 2017, 34(1): 62-72. doi: 10.11804/NuclPhysRev.34.01.062
Citation: Ana Ivanova Georgieva, Kalin Pavlov Drumev. Correlations of the SO(8) Pairing and SU(3) Quadrupole Bases in the Algebraic Shell Model[J]. Nuclear Physics Review, 2017, 34(1): 62-72. doi: 10.11804/NuclPhysRev.34.01.062

Correlations of the SO(8) Pairing and SU(3) Quadrupole Bases in the Algebraic Shell Model

doi: 10.11804/NuclPhysRev.34.01.062
Funds:  Bulgarian National Foundation for Scientific Research(DFNI-E02/6/12.12.2014)
  • Received Date: 2016-09-18
  • Publish Date: 2017-03-20
  • We establish a correspondence between the SO(8) isoscalar, isovector and total pairing bases and the Elliott's SU(3) basis in the algebraic structure of the spatial part of the microscopic shell model. It is derived from the complementarity of these algebras to the same T, S, (S,T) irreducible representations (irreps) of the Wigners supermultiplets, contained in the shell-model number-conserving algebra U(4Ω). This important result allows for the evaluation of the content of SU(3) irreps into the different types of pairing bases which leads to an investigation of the complementarity and competitive effects of pairing and the quadrupole-quadrupole interactions on the energy spectra of the nuclear systems. The theory is valid for any shell and for a number of shells as well, but we illustrate it with the results for a single ds-shell.
  • [1] FLOWERS B. H. Proc Roy Soc London, Ser A, 1952, 212: 248.
    [2] ELLIOTT J. P. Proc Roy Soc London, Ser A, 1958, 245: 128; 1958, 245: 562.
    [3] BOHR A, MOTTELSON B R, PINES D. Phys Rev 1958, 110: 936.
    [4] BELYAEV S T, Mat Fys Medd Dan Vid Selsk 1959, 31: 11.
    [5] KISSLINGER L S, SORENSEN R A. Rev Mod Phys 1963, 35: 853.
    [6] BARANGER M, KUMAR K. Nucl Phys 1965, 62: 113.
    [7] DRAAYER J P. 1993, Algebraic Approaches to Nuclear Structure: Interacting Boson and Fermion Models, Contemporary Concepts in Physics VI, edited by CASTEN R.F. (Harwood Academic, Chur, Switzerland): 423.
    [8] CSEH J. J Phys: Conf Ser 2010, 205: 012021.
    [9] DRUMEV K P, GEORGIEVA A I. Nuclear Theory, 2014, 33: 162, Proceedings of the 33 International Workshop on Nuclear Theory, 22 -28 June 2014, eds. A. Georgieva, N. Minkov, Heron Press, Sofia.
    [10] WIGNER E P, Phys Rev 1937, 51: 106.
    [11] VAN ISACKER P. Rep Prog Phys 1999, 62: 1661.
    [12] KOTA V K B. Symmetries in Science XI, 2004, eds. Gruber B, Marmo G, Yoshinaga N. Kluwer Academic Publishers, Dordrecht: 265.
    [13] VAN ISACKER P, PITTEL S. Physica Scripta, IOP Publishing, 2016, 91(2): 023009 (23pp).
    [14] DRAAYER J P, LESCHBER Y, PARK S C. et al. Computer Physics Communications, 1989, 56: 279.
    [15] VANAGAS V V, Algebraic foundations of microscopic nuclear theory, 1988, Nauka, Moscow, (in Russian).
    [16] KOTA V K B, CASTILHO ALCARAS J A. Nucl Phys A, 2006, 764: 181.
    [17] MOSHINSKY M, QUESNE C. Phys Lett B, 1969, 29: 482.
    [18] AKIYAMA Y, DRAAYER J P. Comput Phys Commun, 1973, 5: 405.
    [19] BAHRI C, DRAAYER J P. Comput Phys Commun, 1994, 83: 59.
    [20] DRAAYER J P, LESCHBER Y, PARK S C, et al. Comput. Phys. Commun., 1989, 56: 279.
    [21] SANTOPINTO E, BIJKER R, IACHELLO F. J Math Phys, 1996, 37: 2674.
    [22] http://www.nndc.bnl.gov/
    [23] VARGAS C E, HIRSCH J G, DRAAYER J P. Nucl Phys A, 2001, 690: 409.
    [24] BAHRI C, ESCHER J, DRAAYER J P. Nucl Phys A, 1995, 592: 171.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1330) PDF downloads(104) Cited by()

Proportional views

Correlations of the SO(8) Pairing and SU(3) Quadrupole Bases in the Algebraic Shell Model

doi: 10.11804/NuclPhysRev.34.01.062
Funds:  Bulgarian National Foundation for Scientific Research(DFNI-E02/6/12.12.2014)

Abstract: We establish a correspondence between the SO(8) isoscalar, isovector and total pairing bases and the Elliott's SU(3) basis in the algebraic structure of the spatial part of the microscopic shell model. It is derived from the complementarity of these algebras to the same T, S, (S,T) irreducible representations (irreps) of the Wigners supermultiplets, contained in the shell-model number-conserving algebra U(4Ω). This important result allows for the evaluation of the content of SU(3) irreps into the different types of pairing bases which leads to an investigation of the complementarity and competitive effects of pairing and the quadrupole-quadrupole interactions on the energy spectra of the nuclear systems. The theory is valid for any shell and for a number of shells as well, but we illustrate it with the results for a single ds-shell.

Ana Ivanova Georgieva, Kalin Pavlov Drumev. Correlations of the SO(8) Pairing and SU(3) Quadrupole Bases in the Algebraic Shell Model[J]. Nuclear Physics Review, 2017, 34(1): 62-72. doi: 10.11804/NuclPhysRev.34.01.062
Citation: Ana Ivanova Georgieva, Kalin Pavlov Drumev. Correlations of the SO(8) Pairing and SU(3) Quadrupole Bases in the Algebraic Shell Model[J]. Nuclear Physics Review, 2017, 34(1): 62-72. doi: 10.11804/NuclPhysRev.34.01.062
Reference (24)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return