Advanced Search
Volume 34 Issue 3
Jul.  2017
Turn off MathJax
Article Contents

WANG Shouyu. Search for Chiral and Reflected Symmetry Breakings in Atomic Nucleus[J]. Nuclear Physics Review, 2017, 34(3): 357-360. doi: 10.11804/NuclPhysRev.34.03.357
Citation: WANG Shouyu. Search for Chiral and Reflected Symmetry Breakings in Atomic Nucleus[J]. Nuclear Physics Review, 2017, 34(3): 357-360. doi: 10.11804/NuclPhysRev.34.03.357

Search for Chiral and Reflected Symmetry Breakings in Atomic Nucleus

doi: 10.11804/NuclPhysRev.34.03.357
Funds:  National Natural Science Foundation of China (11545011, 11461141001, U1432119)
  • Received Date: 2016-12-07
  • Rev Recd Date: 2017-03-20
  • Publish Date: 2017-07-18
  • Spontaneous symmetry breaking is a fundamental concept in nature. Chiral Symmetry Breaking and reflection-asymmetry in nuclei has been a subject of intensive experimental and theoretical investigation. Two pairs of positive-and negative-parity doublet bands together with eight strong electric dipole transitions linking their yrast positive-and negative-parity bands have been identified in 78Br by means of in-beam gamma-ray spectroscopy techniques. These four rotational bands are suggested as multiple chiral doublet bands with octupole correlations. This observation indicates that nuclear chirality can be robust against the octupole correlations. It is of highly scientific interest to search for the chirality-parity quartet bands in nucleus with both stable triaxial and octupole deformations.
  • [1] FRAUENDORF S, MENG J. Nucl Phys A, 1997, 617(2):131.
    [2] STAROSTA K, KOIKE T, CHIARA C J, et al. Phys Rev Lett, 2001, 86(6):971.
    [3] ZHU S, GARG U, NAYAK B K, et al. Phys Rev Lett, 2003, 91(13):132501.
    [4] VAMAN C, FOSSAN D B, KOIKE T, et al. Phys Rev Lett, 2004, 92(3):032501.
    [5] WANG S Y, QI B, LIU L, et al. Phys Lett B, 2011, 703(1):40.
    [6] JOSHI P, JENKINS D G, RADDON P M, et al. Phys Lett B, 2004, 595(1):135.
    [7] TIMÁR J, JOSHI P, STAROSTA K, et al. Phys Lett B, 2004, 598(3):178.
    [8] ZHU S J, HAMILTON J H, RAMAYYA A V, et al. The European Physical Journal A-Hadrons and Nuclei, 2005, 25(1):459.
    [9] TONEV D, YAVAHCHOVA M S, GOUTEV N, et al. Phys Rev Lett, 2014, 112(5):052501.
    [10] LIEDER E O, LIEDER R M, BARK R A, et al. Phys Rev Lett, 2014, 112(20):202502.
    [11] RATHER N, DATTA P, CHATTOPADHYAY S, et al. Phys Rev Lett, 2014, 112(20):202503.
    [12] KOIKE T, STAROSTA K, CHIARA C J, et al. Phys Rev C, 2001, 63(6):061304.
    [13] BARK R A, BAXTER A M, BYRNE A P, et al. Nucl Phys A, 2001, 691(3):577.
    [14] KOIKE T, STAROSTA K, CHIARA C J, et al. Phys Rev C, 2003, 67(4):044319.
    [15] RAINOVSKI G, PAUL E S, CHANTLER H J, et al. Journal of Physics G:Nuclear and Particle Physics, 2003, 29(12):2763.
    [16] WANG S Y, LIU Y Z, KOMATSUBARA T, et al. Phys Rev C, 2006, 74(1):017302.
    [17] ZHAO Y X, KOMATSUBARA T, MA Y J, et al. Chin Phys Lett, 2009, 26(8):082301.
    [18] MA K Y, LU J B, YANG D, et al. Phys Rev C, 2012, 85(3):037301.
    [19] LAWRIE E A, VYMERS P A, LAWRIE J J, et al. Phys Rev C, 2008, 78(2):021305.
    [20] MASITENG P L, LAWRIE E A, RAMASHIDZHA T M, et al. Phys Rev B, 2013, 719(1):83.
    [21] CHASMAN R R. Phys Rev B, 1980, 96(1):7.
    [22] BUTLER P A, NAZAREWICZ W. Reviews of Modern Physics, 1996, 68(2):349.
    [23] GAFFNEY L P, BUTLER P A, SCHECK M, et al. Nature, 2013, 497(2):199.
    [24] BARK R A, LIPOGLAVSEK M, MALIAGE S M, et al. Journal of Physics G:Nuclear and Particle Physics, 2005, 31(10):S1747.
    [25] GAL J, HEGYESI G, MOLNAR J, et al. Nucl Instr Meth A, 2004, 516(2-3):502.
    [26] LIU C, WANG S Y, BARK R A, et al. Phys Rev Lett, 2016, 116(11):112501.
    [27] KUTI I, CHEN Q B, TIMÁR J, et al. Phys Rev Lett, 2014, 113(3):032501.
    [28] DORING J, JOHNS G D, RILEY M A, et al. Phys Rev C, 1998, 57(6):2912.
    [29] XU C, LI X Q, MENG J, et al. Phys Rev C, 2015, 91(6):061303(R).
    [30] SCHWENGNER R, WINTER G, DORING J, et al. Z Phys A, 1987, 326:287.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1561) PDF downloads(156) Cited by()

Proportional views

Search for Chiral and Reflected Symmetry Breakings in Atomic Nucleus

doi: 10.11804/NuclPhysRev.34.03.357
Funds:  National Natural Science Foundation of China (11545011, 11461141001, U1432119)

Abstract: Spontaneous symmetry breaking is a fundamental concept in nature. Chiral Symmetry Breaking and reflection-asymmetry in nuclei has been a subject of intensive experimental and theoretical investigation. Two pairs of positive-and negative-parity doublet bands together with eight strong electric dipole transitions linking their yrast positive-and negative-parity bands have been identified in 78Br by means of in-beam gamma-ray spectroscopy techniques. These four rotational bands are suggested as multiple chiral doublet bands with octupole correlations. This observation indicates that nuclear chirality can be robust against the octupole correlations. It is of highly scientific interest to search for the chirality-parity quartet bands in nucleus with both stable triaxial and octupole deformations.

WANG Shouyu. Search for Chiral and Reflected Symmetry Breakings in Atomic Nucleus[J]. Nuclear Physics Review, 2017, 34(3): 357-360. doi: 10.11804/NuclPhysRev.34.03.357
Citation: WANG Shouyu. Search for Chiral and Reflected Symmetry Breakings in Atomic Nucleus[J]. Nuclear Physics Review, 2017, 34(3): 357-360. doi: 10.11804/NuclPhysRev.34.03.357
Reference (30)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return