Advanced Search
Volume 34 Issue 3
Jul.  2017
Turn off MathJax
Article Contents

AN Zhendong, MA Yugang, FAN Gongtao, CHEN Zhenpeng. Astrophysical S Factor and Reaction Rate of 12C(α,γ)16O Reaction in Stellar Helium Burning[J]. Nuclear Physics Review, 2017, 34(3): 437-445. doi: 10.11804/NuclPhysRev.34.03.437
Citation: AN Zhendong, MA Yugang, FAN Gongtao, CHEN Zhenpeng. Astrophysical S Factor and Reaction Rate of 12C(α,γ)16O Reaction in Stellar Helium Burning[J]. Nuclear Physics Review, 2017, 34(3): 437-445. doi: 10.11804/NuclPhysRev.34.03.437

Astrophysical S Factor and Reaction Rate of 12C(α,γ)16O Reaction in Stellar Helium Burning

doi: 10.11804/NuclPhysRev.34.03.437
Funds:  National Natural Science Foundation of China (11175233, 11220101005, 91126017, 11421505); CPSF-CAS Joint Foundation for Excellent Postdoctoral Fellows (2016LH0045); National Basic Research Program of China (973 Program)(2014CB845401))
  • Received Date: 2016-11-10
  • Rev Recd Date: 2016-11-10
  • Publish Date: 2017-07-18
  • During stellar helium burning, the rates of 3α and the 12C(α,γ)16O reaction, in competition with one another, determine the relative abundances of 12C and 16O in a massive star. The abundance ratio is the beginning condition of the following nucleosynthesis and star evolution of massive stars, which are extremely sensitive to the rate of 12C(α,γ)16O reaction at T9=0.2. The most direct and trustworthy way to obtain the reaction rate of the 12C(α,γ)16O reaction is to measure the S factor for that reaction to as low energy as possible, and to extrapolate to energies of astrophysical interest. Based on a new multilevel and multichannel reduced R-matrix theory for applications in nuclear astrophysics, we have obtained an accurate and self-consistent astrophysical S factor of 12C(α,γ)16O, by a global fitting for almost all available experimental data of 16O system, with the coordination of covariance statistics and error-propagation theory. The extrapolated S factor of 12C(α,γ)16O was obtained with a recommended value STOT (0.3 MeV)=162.7±7.3 keV·b. And the reaction rates of 12C(α,γ)16O for stellar temperatures between 0.04 6 T9 6 10 are provided. At T9=0.2, the reaction rate is (7.83 ±0.35)×10-15 cm3mol-1s-1, where stellar helium burning occurs.
  • [1] ROLFS C E, RODNEY W S. Cauldrons in the Cosmos Chicago, IL:Univ. Chicago Press, 1988:xi-xii.
    [2] FOWLER W A. Rev Mod Phys, 1984, 56:149.
    [3] WOOSLEY W S E, HEGER A. Phys Rep, 2007, 442:269.
    [4] FUJITA K, SAGARA K, TERANISHI T, et al. Few-Body Syst, 2013, 54:1603.
    [5] PLAG R, REIGFARTH R, HEIL M, et al. Phys Rev C, 2012, 86:015805.
    [6] SCHÜRMANN D, DI LEVA A, DE CESARE N, et al. European Phys J A, 2005, 26:301.
    [7] SCHÜRMANN D, DI LEVA A, GIALANELLA L, et al. Phys Lett B, 2011, 703:557.
    [8] DYER P, BARNES C A. Nucl Phys A, 1974, 233:495.
    [9] FEY M. The Focus of Nuclear Astrophysics:12C(α,γ)16O Reaction[D]. Univ of Stuttgart, Germany, 2004.
    [10] ASSUNÇÃO M, FEY M, LEFEOVRE-SCHUHL A, et al. Phys Rev C, 2006, 73:055801.
    [11] KERNEL W M G, WIMMERSPERG U V. Nucl Phys A, 1971, 167:352.
    [12] OPHEL T R, FRAWLEY A D, TREACY P B, et al. Nucl Phys A, 1976, 273:397.
    [13] BROCHARD F, CHEVALLIER P, DISDIER D, et al. J Phys France, 1973, 34363.
    [14] KUNZ R, FEY M, MAYER A, et al. Phys Rev Lett, 2001, 86:3244.
    [15] LARSON J D, SPEAR R H. Nucl Phys, 1964, 56:497.
    [16] MAKⅡ H, NAGAI Y, SHIMA T, et al. Phys Rev C, 2009, 80:065802.
    [17] OUELLET J M L, BUTLER M N, EVANS H C, et al. Phys Rev C, 1996, 54:1982
    [18] OUELLET J M L, EVANS H C, LEE H W, et al. Phys Rev Lett, 1992, 69:1896.
    [19] REDDER A, BECKER, H W, ROLFS C, et al. Nucl Phys A, 1987, 462:385.
    [20] KETTNER K U, BECKER H W, BUCHMANN L, et al. Z Phys A, 1982, 308:73.
    [21] MATEI C, BUCHMANN L, HANNES W R, et al. Phys Rev Lett, 2006, 97:242503.
    [22] ZHAO Z, FRANCE R H, LAI K S, et al. Phys Rev Lett, 1993, 70:2066.
    [23] BUCHMANN L, AZUMA R E, BARNES C A, et al. Phys Rev Lett, 1993, 70:726.
    [24] TANG X D, REHM K E, AHMAD I, et al. Phys Rev Lett, 2007, 99:052502.
    [25] AVILA M L, ROGACHEV G V, KOSHCHIY E, et al. Phys Rev Lett, 2015, 114:071101.
    [26] BELHOUT A, OUICHAOUI S, BEAUMEVIEILLE H, et al. Nucl Phys A, 2007, 793:178.
    [27] BRUNCE C R, GEIST W H, KAVANAGH R W, VEAL K D. Phys Rev Lett, 1999, 83:4025.
    [28] OULEBSIR N, HAMMACHE F, ROUSSEL P, et al. Phys Rev C, 2012, 85:035804.
    [29] GUO B, DU X C, LI Z H, et al. EPJ Web of Conferences, 2016, 109:04003.
    [30] PLAGA R, BECKER H W, REDDER A, et al. Nucl Phys A, 1987, 465:291.
    [31] TISCHHAUSER P, AZUNA R E, BUCHMANN L, et al. Phys Rev Lett, 2002, 88:072501.
    [32] LANE A, THOMAS S. Rev Mod Phys, 1958, 30:257.
    [33] AZUMA R E, UBERSEDER E, SIMPSON E C, et al. Phys Rev C, 2010, 81:045805.
    [34] KATSUMA M. Phys Rev C, 2008, 78:034606.
    [35] KATSUMA M. Astrophys J, 2012, 745:192.
    [36] XU Y, TAKAHASHI K, GORIELY S, et al. Nucl Phys A, 2013, 918:61(NACREⅡ).
    [37] DUFOUR M, DESCOUVEMONT P. Phys Rev C, 2008, 78:015808.
    [38] BARKER F C, KAJINO T. Aust J Phys, 1991, 44:369.
    [39] SCHÜRMANN D, GIALANELLA L, KUNZ R, et al. Phys Lett B, 2012, 711:35.
    [40] KUNZ R, JAEGER M, MAYER A, et al. Astrophys J, 2002, 567:643.
    [41] BUCHMANN L. Astrophys J, 1996, 468:L127.
    [42] ANGULO C, ARNOULD M, RAYET M, et al. Nucl Phys A, 1999, 656:3(NECRE).
    [43] CAUGHLAN G R, FOWLER W A. Atom Data Nucl Data Tables, 1988,40:283(CF88).
    [44] JI X D, FILIPPONE B W, HUMBLET J, et al. Phys Rev C, 1990, 41:1736.
    [45] CHEN Z P, ZHANG R, et al. Science in China (Series G), 2003, 46:225.
    [46] CARLSON A D, BADIKOV S A, CHEN Z P, et al. Nucl Data Sheets, 2008, 109:2834.
    [47] CARLSON A D, PRONYAEV V G, SMITH D L, et al. Nucl Data Sheets, 2009, 110:3215.
    [48] AN Z D, CHEN Z P, MA Y G, et al. Phys Rev C, 2015, 92:045802.
    [49] AN Z D, MA Y G, FAN G T, et al. Astrophysical Journal Letters, 2016, 817:L5.
    [50] LIU W P, LI Z H, HE J J, et al. (JUNA Collaboration) Sci China-Phys Mech Astron, 2016, 59:642001.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1706) PDF downloads(183) Cited by()

Proportional views

Astrophysical S Factor and Reaction Rate of 12C(α,γ)16O Reaction in Stellar Helium Burning

doi: 10.11804/NuclPhysRev.34.03.437
Funds:  National Natural Science Foundation of China (11175233, 11220101005, 91126017, 11421505); CPSF-CAS Joint Foundation for Excellent Postdoctoral Fellows (2016LH0045); National Basic Research Program of China (973 Program)(2014CB845401))

Abstract: During stellar helium burning, the rates of 3α and the 12C(α,γ)16O reaction, in competition with one another, determine the relative abundances of 12C and 16O in a massive star. The abundance ratio is the beginning condition of the following nucleosynthesis and star evolution of massive stars, which are extremely sensitive to the rate of 12C(α,γ)16O reaction at T9=0.2. The most direct and trustworthy way to obtain the reaction rate of the 12C(α,γ)16O reaction is to measure the S factor for that reaction to as low energy as possible, and to extrapolate to energies of astrophysical interest. Based on a new multilevel and multichannel reduced R-matrix theory for applications in nuclear astrophysics, we have obtained an accurate and self-consistent astrophysical S factor of 12C(α,γ)16O, by a global fitting for almost all available experimental data of 16O system, with the coordination of covariance statistics and error-propagation theory. The extrapolated S factor of 12C(α,γ)16O was obtained with a recommended value STOT (0.3 MeV)=162.7±7.3 keV·b. And the reaction rates of 12C(α,γ)16O for stellar temperatures between 0.04 6 T9 6 10 are provided. At T9=0.2, the reaction rate is (7.83 ±0.35)×10-15 cm3mol-1s-1, where stellar helium burning occurs.

AN Zhendong, MA Yugang, FAN Gongtao, CHEN Zhenpeng. Astrophysical S Factor and Reaction Rate of 12C(α,γ)16O Reaction in Stellar Helium Burning[J]. Nuclear Physics Review, 2017, 34(3): 437-445. doi: 10.11804/NuclPhysRev.34.03.437
Citation: AN Zhendong, MA Yugang, FAN Gongtao, CHEN Zhenpeng. Astrophysical S Factor and Reaction Rate of 12C(α,γ)16O Reaction in Stellar Helium Burning[J]. Nuclear Physics Review, 2017, 34(3): 437-445. doi: 10.11804/NuclPhysRev.34.03.437
Reference (50)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return