Advanced Search
Volume 34 Issue 3
Jul.  2017
Turn off MathJax
Article Contents

CHENG Ruixue, SONG Yidan, DAI Zhitao, MA Chunwan. Scaling of Information Uncertainty of Neutron-rich Isobars in Heavy-ion Collisions[J]. Nuclear Physics Review, 2017, 34(3): 520-524. doi: 10.11804/NuclPhysRev.34.03.520
Citation: CHENG Ruixue, SONG Yidan, DAI Zhitao, MA Chunwan. Scaling of Information Uncertainty of Neutron-rich Isobars in Heavy-ion Collisions[J]. Nuclear Physics Review, 2017, 34(3): 520-524. doi: 10.11804/NuclPhysRev.34.03.520

Scaling of Information Uncertainty of Neutron-rich Isobars in Heavy-ion Collisions

doi: 10.11804/NuclPhysRev.34.03.520
Funds:  National Natural Science Foundation of China (U1732135); Natural Science Foundation of Henan Province (162300410179); National Training Programs of Innovation and Entrepreneurship for Undergraduates (201510476017)
More Information
  • Corresponding author: 10.11804/NuclPhysRev.34.03.520
  • Received Date: 2016-12-13
  • Rev Recd Date: 2017-08-02
  • Publish Date: 2017-07-18
  • A scaling phenomena has been discovered for fragments produced in heavy-ion collisions both in the measured experiments and in the simulated reactions by transport model. In this scaling phenomena, the information entropy uncertainty difference between isobars with different neutron-excess has a uniform distribution between two reactions. The simulated reactions of 140 AMeV 58,64Ni+9Be by using the asymmetric molecular dynamics(AMD) model plus the sequential decay code GEMINI are analyzed to show the scaling phenomena of fragments. Since the application of information entropy theory does not require the system to be in equilibrium, it can be used both in the analysis of transport model and thermodynamics models. The advantage of the information entropy theory provides a new method to study the dynamical evolution of nuclear matter inheavy-ion collisions.
  • [1] SHANNON C E. Bell System Technical J, 1948, 27:379.
    [2] MA Y G. Phys Rev Lett, 1999, 83:3617.
    [3] MA C W, WEI H L, WANG S S, et al. Phys Lett B, 2015, 742:19.
    [4] MA CW, WEI H L. Commun Theor Phys, 2014, 62:717.
    [5] JAYNES E T. Phys Rev, 1957, 106:620.
    [6] MOCKO M, TSANG M B, ANDRONENKO L, et al. Phys Rev C, 2006, 74:054612.
    [7] ALBERGO S, COSTA S, COSTANZO E, et al. Nuovo Cimento A, 1985, 89:1.
    [8] DAS C B, DAS GUPTA S, LIU X D, et al. Phys Rev C, 2001, 64:044608.
    [9] TSANG M B, LYNCH W B, FRIEDMAN W A, et al. Phys Rev C, 2007, 76:041302(R).
    [10] HUANG M, CHEN Z, KOWALSKI S. Nucl Phys A, 2011, 847:233.
    [11] MA C W, WANG S S, ZHANG Y L, et al. Phys Rev C, 2013, 87:034618.
    [12] MA C W, WANG S S, ZHANG Y L, et al. J Phys G:Nucl Part Phys, 2013, 40:125106.
    [13] MA C W, BAI X M, YU J, et al. Eur Phys J A, 2014, 50:139.
    [14] MA C W, YU J, BAI X M, et al. Phys Rev C, 2014, 89:057602.
    [15] QIAO C Y, WEI H L, MA C W, et al. Phys Rev C, 2015, 92:014612.
    [16] YU M, WEI H L, MA C W. Nucl Sci Tech, 2015, 26:S20503.
    [17] BROGUEIRA P, DIAS D J, DA SILVA I P. Phys Rev D, 1996, 53:5283.
    [18] CAO Z, HWA R C. Phys Rev D, 1996, 53:6608.
    [19] XU H S, TSANG M B, LIU T X, et al. Phys Rev Lett, 2000, 85:716.
    [20] GERACI E, BRUNO M, D'AGOSTINO M, et al. Nucl Phys A, 2004, 732:173.
    [21] TSANG M B, FRIEDMAN W A, GELBKE C K, et al. Phys Rev Lett, 2001, 86:5023.
    [22] MA C W, BAI X M, YU J, et al. Eur Phys J A, 2014, 50:139.
    [23] MA C W, YU J, BAI X M, et al. Phys Rev C, 2014, 89:057602.
    [24] YU M, WEI H L, MA C W. Commun Theor Phys, 2015, 64:727.
    [25] ONO A, DANIELEWICZ P, FRIEDMAN W A, et al. Phys Rev C, 2003, 68:051601(R).
    [26] ONO A, HORIUCHI H. Phys Rev C, 1996, 53:2958.
    [27] ONO A. Phys Rev C, 1999, 59:853.
    [28] ONO A, DANIELEWICZ P, FRIEDMAN W A, et al. Phys Rev C, 2004, 70:041604(R).
    [29] CHARITY R J, MCMAHAN M A, WOZNIAK G J, et al. Nucl Phys A, 1988, 483:371.
    [30] DECHARGÉ J, GOGNY D. Phys Rev C, 1980, 21:1568.
    [31] MA C W, ZHANG Y L, WANG S S, et al. Chin Phys Lett, 2015, 32:072501.
    [32] HUANG M, CHEN Z, KOWALSKI S, et al. Phys Rev C, 2010, 81:044620.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1405) PDF downloads(126) Cited by()

Proportional views

Scaling of Information Uncertainty of Neutron-rich Isobars in Heavy-ion Collisions

doi: 10.11804/NuclPhysRev.34.03.520
Funds:  National Natural Science Foundation of China (U1732135); Natural Science Foundation of Henan Province (162300410179); National Training Programs of Innovation and Entrepreneurship for Undergraduates (201510476017)
    Corresponding author: 10.11804/NuclPhysRev.34.03.520

Abstract: A scaling phenomena has been discovered for fragments produced in heavy-ion collisions both in the measured experiments and in the simulated reactions by transport model. In this scaling phenomena, the information entropy uncertainty difference between isobars with different neutron-excess has a uniform distribution between two reactions. The simulated reactions of 140 AMeV 58,64Ni+9Be by using the asymmetric molecular dynamics(AMD) model plus the sequential decay code GEMINI are analyzed to show the scaling phenomena of fragments. Since the application of information entropy theory does not require the system to be in equilibrium, it can be used both in the analysis of transport model and thermodynamics models. The advantage of the information entropy theory provides a new method to study the dynamical evolution of nuclear matter inheavy-ion collisions.

CHENG Ruixue, SONG Yidan, DAI Zhitao, MA Chunwan. Scaling of Information Uncertainty of Neutron-rich Isobars in Heavy-ion Collisions[J]. Nuclear Physics Review, 2017, 34(3): 520-524. doi: 10.11804/NuclPhysRev.34.03.520
Citation: CHENG Ruixue, SONG Yidan, DAI Zhitao, MA Chunwan. Scaling of Information Uncertainty of Neutron-rich Isobars in Heavy-ion Collisions[J]. Nuclear Physics Review, 2017, 34(3): 520-524. doi: 10.11804/NuclPhysRev.34.03.520
Reference (32)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return