Advanced Search
Volume 34 Issue 3
Jul.  2017
Turn off MathJax
Article Contents

TANG Zhanduo, SHAO Guoyun, GAO Xueyan, GAO Ning, HE Weibo. QCD Phase Diagram in the Improved PNJL Model[J]. Nuclear Physics Review, 2017, 34(3): 575-579. doi: 10.11804/NuclPhysRev.34.03.575
Citation: TANG Zhanduo, SHAO Guoyun, GAO Xueyan, GAO Ning, HE Weibo. QCD Phase Diagram in the Improved PNJL Model[J]. Nuclear Physics Review, 2017, 34(3): 575-579. doi: 10.11804/NuclPhysRev.34.03.575

QCD Phase Diagram in the Improved PNJL Model

doi: 10.11804/NuclPhysRev.34.03.575
Funds:  National Natural Science Foundation of China (11305121); Specialized Research Fund for Doctoral Program of Higher Education (20130201120046); Natural Science Basic Research Plan in Shaanxi Province of China(2014JQ1012)
  • Received Date: 2016-11-10
  • Rev Recd Date: 2017-05-19
  • Publish Date: 2017-07-18
  • Polyakov-Nambu-Jona-Lasinio (PNJL) model is one of the most popular effective quark models to investigate the properties of strongly interacting matter. Based on the PNJL model, we consider the entanglement interactions between the chiral condensate and Polyakov-loop, as well as the chemical potential modification of Polyakov-loop potential simultaneously, which is named μEPNJL model. Compared with the original PNJL model, the calculations in the mean field approximation show that the critical end point (CEP) given in the μEPNJL model moves towards higher temperature and smaller chemical potential in the T-μ phase diagram. Besides, the chiral symmetry restoration and deconfinement phase transition coincide well in a wide range of chemical potential. Comparing our calculations with the measurement of the moments of net-proton multiplicity distributions at Relativistic Heavy-Ion Collider (RHIC) by STAR Collaboration, we find that the CEP given by μEPNJL model can be closer to the range predicted by the experiment through appropriate parameter adjustment.
  • [1] ADAMCZYK L, ADKINS J K, AGAKISHIEV G, et al. Physical Review Letters, 2014, 112(3):032302.
    [2] ODYNIEC G. Journal of Physics:Conference Series, 2013, 455(1):012037.
    [3] SCHAEFER B J. Physics of Atomic Nuclei, 2012, 75(6):741.
    [4] BORÁNYI S, FODOR Z, HOELBLING C, et al. Journal of High Energy Physics, 2010, 2010(9):1.
    [5] AOKI Y, BORSÁNYI S, DÜRR S, et al. Journal of High Energy Physics, 2009, 2009(06):088.
    [6] CHENG M, CHRIST N H, DATTA S, et al. Physical Review D, 2006, 74(5):054507.
    [7] HATSUDA T, KUNIHIRO T. Physics Letters B, 1984, 145(1):7.
    [8] REHBERG P, KLEVANSKY S P, HüFNER J. Physical Review C, 1996, 53(1):410.
    [9] FUKUSHIMA K. Physics Letters B, 2004, 591(3):277.
    [10] COSTA P, RUIVO M C, DE SOUSA C A, et al. Symmetry, 2010, 2(3):1338.
    [11] LOIZIDES C. The European Physical Journal C, 2007, 49(1):339.
    [12] SKOKOV V, FRIMAN B, REDLICH K. Physical Review C, 2011, 83(5):054904.
    [13] COLEMAN S, WITTEN E. Physical Review Letters, 1980, 45(2):100.
    [14] KARSCH F, LAERMANN E. Physical Review D, 1994, 50(11):6954.
    [15] KACZMAREK O, ZANTOW F. Physical Review D, 2005, 71(11):114510.
    [16] DE FORCRAND P, PHILIPSEN O. Nuclear Physics B, 2002, 642(1):290.
    [17] D' ELIA M, SANFILIPPO F. Physical Review D, 2009, 80(11):111501.
    [18] KOGUT J B, SINCLAIR D K. Physical Review D, 2004, 70(9):094501.
    [19] D' ELIA M, SANFILIPPO F. Physical Review D, 2009, 80(1):014502.
    [20] ROESSNER S, RATTI C, WEISE W. Physical Review D, 2007, 75(3):034007.
    [21] SHAO G Y, TANG Z D, DI TORO M, et al. Physical Review D, 2015, 92(11):114027.
    [22] SAKAI Y, SASAKI T, KOUNO H, et al. Physical Review D, 2010, 82(7):076003.
    [23] SCHAEFER B J, PAWLOWSKI J M, WAMBACH J. Physical Review D, 2007, 76(7):074023.
    [24] SHAO G Y, TANG Z D, DI TORO M, et al. Physical Review D, 2016, 94(1):014008.
    [25] FUKUSHIMA K. Physical Review D, 2008, 77(11):114028.
    [26] MCLERRAN L, PISARSKI R D. Nuclear Physics A, 2007, 796(1):83.
    [27] FUKUSHIMA K. Physical Review C, 2015, 91(4):044910.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1381) PDF downloads(129) Cited by()

Proportional views

QCD Phase Diagram in the Improved PNJL Model

doi: 10.11804/NuclPhysRev.34.03.575
Funds:  National Natural Science Foundation of China (11305121); Specialized Research Fund for Doctoral Program of Higher Education (20130201120046); Natural Science Basic Research Plan in Shaanxi Province of China(2014JQ1012)

Abstract: Polyakov-Nambu-Jona-Lasinio (PNJL) model is one of the most popular effective quark models to investigate the properties of strongly interacting matter. Based on the PNJL model, we consider the entanglement interactions between the chiral condensate and Polyakov-loop, as well as the chemical potential modification of Polyakov-loop potential simultaneously, which is named μEPNJL model. Compared with the original PNJL model, the calculations in the mean field approximation show that the critical end point (CEP) given in the μEPNJL model moves towards higher temperature and smaller chemical potential in the T-μ phase diagram. Besides, the chiral symmetry restoration and deconfinement phase transition coincide well in a wide range of chemical potential. Comparing our calculations with the measurement of the moments of net-proton multiplicity distributions at Relativistic Heavy-Ion Collider (RHIC) by STAR Collaboration, we find that the CEP given by μEPNJL model can be closer to the range predicted by the experiment through appropriate parameter adjustment.

TANG Zhanduo, SHAO Guoyun, GAO Xueyan, GAO Ning, HE Weibo. QCD Phase Diagram in the Improved PNJL Model[J]. Nuclear Physics Review, 2017, 34(3): 575-579. doi: 10.11804/NuclPhysRev.34.03.575
Citation: TANG Zhanduo, SHAO Guoyun, GAO Xueyan, GAO Ning, HE Weibo. QCD Phase Diagram in the Improved PNJL Model[J]. Nuclear Physics Review, 2017, 34(3): 575-579. doi: 10.11804/NuclPhysRev.34.03.575
Reference (27)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return