Advanced Search
Volume 34 Issue 3
Jul.  2017
Turn off MathJax
Article Contents

ZHANG Zheng, ZHAO Qiang, LI Yang, ZHANG Hao, FU Jingpin, OUYANG Xiaoping. Effects of the Transition Metals Zirconium and Iron on Hydrogen and Helium Behavior in Tungsten[J]. Nuclear Physics Review, 2017, 34(3): 661-666. doi: 10.11804/NuclPhysRev.34.03.661
Citation: ZHANG Zheng, ZHAO Qiang, LI Yang, ZHANG Hao, FU Jingpin, OUYANG Xiaoping. Effects of the Transition Metals Zirconium and Iron on Hydrogen and Helium Behavior in Tungsten[J]. Nuclear Physics Review, 2017, 34(3): 661-666. doi: 10.11804/NuclPhysRev.34.03.661

Effects of the Transition Metals Zirconium and Iron on Hydrogen and Helium Behavior in Tungsten

doi: 10.11804/NuclPhysRev.34.03.661
Funds:  Fundamental Research Funds for Central Universities(2017MS079); National Natural Science Foundation of China(11275071, 11305061)
More Information
  • Corresponding author: 10.11804/NuclPhysRev.34.03.661
  • Received Date: 2016-11-20
  • Rev Recd Date: 2017-05-09
  • Publish Date: 2017-07-18
  • Tungsten was widely considered as a highly promising candidate of plasma facing material, while the presence of hydrogen and helium has an adverse effect on the performance of the tungsten. The effects of transition metals (zirconium, iron) on the behavior of hydrogen and helium in tungsten were investigated by using the first-principles calculation method. The results show that doping of zirconium and iron decreases the mechanical strength of tungsten a little, but they increase the ductility of tungsten; zirconium and iron can't change the best occupied site of hydrogen and helium in tungsten, but they have some effect on the stability of the point defects formed by hydrogen and helium in tungsten; there is the best attraction radius between the transition metals (zirconium, iron) and hydrogen or helium in tungsten; there is an attractive interaction between iron and helium in a short distance (<3.626 Å), but a repulsion interaction in a long distance (>3.626 Å). An attractive interaction exists between zirconium and helium or hydrogen in tungsten whatever the distance is; the hydrogen that in tungsten has an electrophilic nature, while the helium has opposite features. The attraction interaction between zirconium and hydrogen or helium in tungsten is stronger than that of iron. Our works in this paper might provide a theory guide for the selection and preparation of the tungsten based alloy that is used as the plasma facing materials.
  • [1] ITER Physics Basis Editors. Nucl Fusion 1999, 39(12):2137.
    [2] ZHANG Z, ZHAO Q, OUYANG X P. J Nucl Radio Chem, 2016, 38(1):19. (in Chinese) (张峥, 赵强, 欧阳晓平. 核化学与放射化学, 2016, 38(1):19.)
    [3] BECQUART C S, Domain C. J Nucl Mater, 2009, 385(2):223.
    [4] BECQUART C S, DOMAIN C, SARKAR U, et al. J Nucl Mater, 2010, 403(1-3):75.
    [5] HOU M, ORTIZ C J, BECQUART C S, et al. J Nucl Mater, 2010, 403(1-3):89.
    [6] BECQUART C S, BARTHE M F, DE BACKER A. Phys Scripta, 2011, T145:014048.
    [7] WANG W J, KOBAYASHI M, KURATA R, et al. J Nucl Mater, 2011, 417(1-3):555.
    [8] DE BACKER A, LHUILLIER P E, BECQUART C S, et al. J Nucl Mater, 2012, 429(1-3):78.
    [9] BOISSE J, DOMAIN C, BECQUART C S. J Nucl Mater, 2014, 455(1-3):10.
    [10] LU G H, ZHOU H B, BECQUART C S. Nucl Fusion, 2014, 54:086001.
    [11] HODILLE E A, BONNIN X, BISSON R, et al. J Nucl Mater, 2015, 467(1):424.
    [12] HODILLE E A, FERRO Y, FERNANDEZ N, et al. Phys Scripta, 2016, T167:014011.
    [13] DE BACKER A, SAND A, ORTIZ C J, et al. Phys Scripta, 2016, T167:014018.
    [14] LIU Y L, ZHOU H B, ZHANG Y, et al. Comp Mater Sci, 2011, 50(11):3213.
    [15] YUAN Y, GREUNER H, BöSWIRTH B, et al. J Nucl Mater, 2013, 433(s1-3):523.
    [16] HAN T, FAN Z Q, ZHAO S X, et al. J Nucl Mater, 2013, 433(s1-3):351.
    [17] YOU Y W, LI D, KONG X S, et al. Nucl Fusion, 2014, 54(10):103007.
    [18] HAO T, FAN Z Q, ZHANG T, et al. J Nucl Mater, 2014, 455(1-3):595.
    [19] LI C, GREUNER H, ZHAO S X, et al. J Nucl Mater, 2015, 466:357.
    [20] WANG S, KONG X S, WU X, et al. J Nucl Mater, 2015, 459(6):143.
    [21] XU H Y, TEMMERMAN G D, LUO G N, et al. J Nucl Mater, 2015, 463:308.
    [22] YANG X D, XIE Z M, MIAO S, et al. Fusion Eng Des, 2016, 106:56.
    [23] WU X B, KONG X S, YOU Y W, et al. Nucl Fusion, 2013, 53(7):073049.
    [24] WU X B, KONG X S, YOU Y W, et al. J Nucl Mater, 2014, 455(s1-3):151.
    [25] KONG X S, WU X, YOU Y W, et al. Acta Mater, 2014, 66(2):172.
    [26] KONG X S, WU X B, LIU C S, et al. Nucl Fusion, 2016, 56(2):026004.
    [27] TYBURSKA-PüSCHEL B, ALIMOV V K. Nucl Fusion, 2013, 53(12):123021.
    [28] ZAYACHUK Y, HOEN M H J, ZEIJLMANSV, EMMICHOVEN P A, et al. Nucl Fusion, 2013, 53(1):013013.
    [29] ZAYACHUK Y, MANHARD A, HOEN M H J, et al. Nucl Fusion, 2014, 54(12):123013.
    [30] LIU Y L, ZHANG Y, LUO G N, et al. J Nucl Mater, 2009, s390-391(3):1032.
    [31] ALKHAMEES A, LIU Y L, ZHOU H B, et al. J Nucl Mater, 2009, 393(3):508.
    [32] ZHOU H B, LIU Y L, JIN S, et al. Nucl Fusion, 2010, 50(2):275.
    [33] DUAN C, LIU Y L, ZHOU H B, et al. J Nucl Mater, 2010, 404(2):109.
    [34] JIN S, LIU Y L, ZHOU H B, et al. J Nucl Mater, 2011, 415(1):S709.
    [35] ZHOU H B, JIN S, ZHANG Y, et al. Prog Nat Sci Mater, 2011, 21(3):240.
    [36] ZHOU H B, OU X, ZHANG Y, et al. J Nucl Mater, 2013, 440(s1-3):338.
    [37] ZHOU H B, LI Y H, LU G H. Comp Mater Sci, 2015, 112:487.
    [38] QIN S Y, JIN S, SUN L, et al. J Nucl Mater, 2015, 465:135.
    [39] WANG J, ZHANG Y, ZHOU H B, et al. J Nucl Mater, 2015, 461:230.
    [40] WU X B, YOU Y W, KONG X S, et al. Acta Mater, 2016, 120:315.
    [41] LI W Y, ZHANG Y, ZHOU H B, et al. Nucl Instr Meth B, 2011, 269(14):1731.
    [42] FENG J, CHEN J C, XIAO B. Mater Rev, 2005, 19(f05):239. (in Chinese) (冯晶, 陈敬超, 肖冰.材料导报, 2005, 19(f05):239.)
    [43] HOHENBERG P, KOHN W. Phys Rev, 1964, 136:B864.
    [44] KOHN W, SHAM L J. Phys Rev, 1965, 140:A1133.
    [45] CLART S J, SEGALL M D, PICKARD C J, et al.Z KristCryst Mater, 2005, 220(5/6):567.
    [46] PERDEW J P, YUE W, Phys Rev B, 1986, 22:8800.
    [47] PERDEW J P, CHEVARY J, VOSKO S, et al. Phys Rev B, 1992, 46:6671.
    [48] PERDEW J P, BURKE K, ERNZERHOF M. Phys Rev Lett, 1996, 77:3865.
    [49] ⅡKURA H, TSUNEDA T, YANAI T,HIRAO K. J Chem Phys, 2001, 115:3540.
    [50] BECQUART C, DOMAIN C.Nucl Instr Meth B, 2007, 255:23.
    [51] SöDERLIND P, ERIKSSON O, WILLS J. Phys Rev B, 1993, 48:5844.
    [52] LEE S C, CHOI J H, LEE J G, J Nucl Mater, 2009, 383:244.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1146) PDF downloads(185) Cited by()

Proportional views

Effects of the Transition Metals Zirconium and Iron on Hydrogen and Helium Behavior in Tungsten

doi: 10.11804/NuclPhysRev.34.03.661
Funds:  Fundamental Research Funds for Central Universities(2017MS079); National Natural Science Foundation of China(11275071, 11305061)
    Corresponding author: 10.11804/NuclPhysRev.34.03.661

Abstract: Tungsten was widely considered as a highly promising candidate of plasma facing material, while the presence of hydrogen and helium has an adverse effect on the performance of the tungsten. The effects of transition metals (zirconium, iron) on the behavior of hydrogen and helium in tungsten were investigated by using the first-principles calculation method. The results show that doping of zirconium and iron decreases the mechanical strength of tungsten a little, but they increase the ductility of tungsten; zirconium and iron can't change the best occupied site of hydrogen and helium in tungsten, but they have some effect on the stability of the point defects formed by hydrogen and helium in tungsten; there is the best attraction radius between the transition metals (zirconium, iron) and hydrogen or helium in tungsten; there is an attractive interaction between iron and helium in a short distance (<3.626 Å), but a repulsion interaction in a long distance (>3.626 Å). An attractive interaction exists between zirconium and helium or hydrogen in tungsten whatever the distance is; the hydrogen that in tungsten has an electrophilic nature, while the helium has opposite features. The attraction interaction between zirconium and hydrogen or helium in tungsten is stronger than that of iron. Our works in this paper might provide a theory guide for the selection and preparation of the tungsten based alloy that is used as the plasma facing materials.

ZHANG Zheng, ZHAO Qiang, LI Yang, ZHANG Hao, FU Jingpin, OUYANG Xiaoping. Effects of the Transition Metals Zirconium and Iron on Hydrogen and Helium Behavior in Tungsten[J]. Nuclear Physics Review, 2017, 34(3): 661-666. doi: 10.11804/NuclPhysRev.34.03.661
Citation: ZHANG Zheng, ZHAO Qiang, LI Yang, ZHANG Hao, FU Jingpin, OUYANG Xiaoping. Effects of the Transition Metals Zirconium and Iron on Hydrogen and Helium Behavior in Tungsten[J]. Nuclear Physics Review, 2017, 34(3): 661-666. doi: 10.11804/NuclPhysRev.34.03.661
Reference (52)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return