Advanced Search

WANG Kailong, QIANG Yunhua, LIU Minliang, ZHOU Xiaohong, WANG Jianguo, GUO Song, ZHENG Kuankuan. On the Origin of 21/2+ Yrast Trap in 93Mo[J]. Nuclear Physics Review, 2017, 34(4): 699-704. doi: 10.11804/NuclPhysRev.34.04.699
Citation: WANG Kailong, QIANG Yunhua, LIU Minliang, ZHOU Xiaohong, WANG Jianguo, GUO Song, ZHENG Kuankuan. On the Origin of 21/2+ Yrast Trap in 93Mo[J]. Nuclear Physics Review, 2017, 34(4): 699-704. doi: 10.11804/NuclPhysRev.34.04.699

On the Origin of 21/2+ Yrast Trap in 93Mo

doi: 10.11804/NuclPhysRev.34.04.699
Funds:  National Basic Research Program of China(973 Program) (2013CB834403);National Natural Science Foundation of China (11305220, 11575255)
  • Received Date: 2017-04-27
  • Rev Recd Date: 2017-05-25
  • Publish Date: 2017-12-20
  • Isomerism of the high-spin yrast 21/2+ states of the N=51 isotones 91Zr, 93Mo and 95Ru has been investigated using the shell model calculations. It is found that the low-j πp1/2 is responsible for the only yrast trap in 93Mo. In addition, the relatively smaller 101+-121+ level spacing in 94Mo has been found by investigating the systematics of the 101+-121+ level structures in the N=52 isotones 92Zr, 94Mo and 96Ru. This result provides a supplementary argument to the origin of the 21/2+ yrast trap in 93Mo from the viewpoint of the similarity between the configurations of 101+-121+ states in 94Mo and those of 17/21+-21/21+ states in 93Mo.
  • [1] CASTEN R F. Nuclear Structure From A Simple Perspective[M]. New York:Oxford University Press, 1990.
    [2] BOHR A, MOTTELSON B R. Physica Scripta, 1974, 10:A13; Nuclear Structure[M]. Vol. Ⅱ. Singapore:World Scientific Publishing, 1998:41.
    [3] FAESTERMANN T, GÓRSKA M, GRAWE H. Prog Part Nucl Phys, 2013, 69:85.
    [4] MEYER R A, YAFFE R P. Phys Rev C, 1977, 15:390.
    [5] FUKUCHI T, GONO Y, ODAHARA A, et al. Eur Phys J A, 2005, 24:249.
    [6] HORI T, MASUE T, ODAHARA A, et al. Phys Rev C, 2009, 80:034306.
    [7] PLETTNER C, GRAWEA H, MUKHA I, et al. Nucl Phys A, 2004, 733:20.
    [8] MǍRGINEAN N, BUCURESCU D, ALVAREZ C ROSSI, et al. Phys Rev C, 2003, 67:061301(R).
    [9] DÖRING J, GRAWE H, SCHMIDT K, et al. Phys Rev C, 2003, 68:034306.
    [10] SINGH B S NARA, LIU Z, WADSWORTH R, et al. Phys Rev Lett, 2011, 107:172502.
    [11] LORUSSO G, BECERRIL A, AMTHOR A, et al. Phys Lett B, 2011, 699:141.
    [12] BROWN B A, LESSER P M S, FOSSAN D B. Phys Rev Lett, 1975, 34:161.
    [13] BROWN B A, LESSER P M S, FOSSAN D B. Phys Rev C, 1976, 13:1900.
    [14] GORSKA M, GRAWE H, FOLTESCU D, et al. Z Phys A, 1995, 353:233.
    [15] COMMARA M LA, SCHMIDT K, GRAWEB H, et al. Nucl Phys A, 2002, 708:167.
    [16] CHOWDHURY P, BROWN B A, GARG U, et al. Phys Rev C, 1985, 32:1238.
    [17] BECERRIL A D, LORUSSO G, AMTHOR A M, et al. Phys Rev C, 2011, 84:041303(R).
    [18] BOUTACHKOV P, GORSKA M, GRAWE H, et al. Phys Rev C, 2011, 84:044311.
    [19] JONES G A, REGAN P H, WALKER P M, et al. Phy Rev C, 2007, 76:047303.
    [20] SIMPSON G S, PINSTON J A, BALABANSKI D, et al. Phys Rev C, 2006, 74:064308.
    [21] ENSDF. http://www.nndc.bnl.gov/ensdf/.
    [22] HASEGAWA M, SUN Y, TAZAKI S, et al. Phys Lett B, 2011, 696:197.
    [23] ZHANG Y H, HASEGAWA M, GUO W T, et al. Phys Rev C, 2009, 79:044316.
    [24] GLOECKNER D H, SERDUKE F J D. Nucl Phys A, 1974, 220:477.
    [25] GLOECKNER D H. Nucl Phys A, 1975, 253:301.
    [26] SHARP D K, KAY B P, THOMAS J S, et al. Phys Rev C, 2013, 87:014312.
    [27] GHUGRE S S, PATEL S B, GUPTA M, et al. Phys Rev C, 1994, 50:1346.
    [28] GALINDO E, HAUSMANN M, JUNGCLAUS A, et al. Phys Rev C, 2004, 69:024304.
    [29] ZHANG C H, WANG S J, GU J N. Phys Rev C, 1999, 60:054316.
    [30] RAE W D M. NuShellX, http://www.garsington.eclipse.co.uk/.
    [31] WANG Z G, LIU M L, ZHANG Y H, et al. Phys Rev C, 2014, 89:044308.
    [32] BAYMAN B F, LANDE A. Nuclear Physics, 1966, 77:1.
    [33] KHARRAJA B, GHUGRE S S, GARG U, et al. Phys Rev C, 1998, 57:83.
    [34] BAGLIN C M. Nuclear Data Sheets, 2011, 112:1163.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1036) PDF downloads(163) Cited by()

Proportional views

On the Origin of 21/2+ Yrast Trap in 93Mo

doi: 10.11804/NuclPhysRev.34.04.699
Funds:  National Basic Research Program of China(973 Program) (2013CB834403);National Natural Science Foundation of China (11305220, 11575255)

Abstract: Isomerism of the high-spin yrast 21/2+ states of the N=51 isotones 91Zr, 93Mo and 95Ru has been investigated using the shell model calculations. It is found that the low-j πp1/2 is responsible for the only yrast trap in 93Mo. In addition, the relatively smaller 101+-121+ level spacing in 94Mo has been found by investigating the systematics of the 101+-121+ level structures in the N=52 isotones 92Zr, 94Mo and 96Ru. This result provides a supplementary argument to the origin of the 21/2+ yrast trap in 93Mo from the viewpoint of the similarity between the configurations of 101+-121+ states in 94Mo and those of 17/21+-21/21+ states in 93Mo.

WANG Kailong, QIANG Yunhua, LIU Minliang, ZHOU Xiaohong, WANG Jianguo, GUO Song, ZHENG Kuankuan. On the Origin of 21/2+ Yrast Trap in 93Mo[J]. Nuclear Physics Review, 2017, 34(4): 699-704. doi: 10.11804/NuclPhysRev.34.04.699
Citation: WANG Kailong, QIANG Yunhua, LIU Minliang, ZHOU Xiaohong, WANG Jianguo, GUO Song, ZHENG Kuankuan. On the Origin of 21/2+ Yrast Trap in 93Mo[J]. Nuclear Physics Review, 2017, 34(4): 699-704. doi: 10.11804/NuclPhysRev.34.04.699
Reference (34)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return