Advanced Search

YU Zi, DING Wenbo, XU Yan, ZHANG Guiqing. Can the Moment of Inertia of Massive Neutron Stars be Used to Constrain the Hyperon Couplings?[J]. Nuclear Physics Review, 2018, 35(2): 127-132. doi: 10.11804/NuclPhysRev.35.02.127
Citation: YU Zi, DING Wenbo, XU Yan, ZHANG Guiqing. Can the Moment of Inertia of Massive Neutron Stars be Used to Constrain the Hyperon Couplings?[J]. Nuclear Physics Review, 2018, 35(2): 127-132. doi: 10.11804/NuclPhysRev.35.02.127

Can the Moment of Inertia of Massive Neutron Stars be Used to Constrain the Hyperon Couplings?

doi: 10.11804/NuclPhysRev.35.02.127
Funds:  Natural Science Fundamental Research Project of Jiangsu Colleges and Universities (Bk20140982); National Natural Science Foundation of China (11265009, 11175077, 11271055)
  • Received Date: 2018-04-20
  • Rev Recd Date: 2018-05-26
  • Publish Date: 2018-06-20
  • In the framework of the relativistic mean field theory(RMFT) with GL91 cets, the momentum of inertia (I) of slowly rotating neutron stars is studied by perturbative approach. The scalar hyperon coupling should lie in the range of Xσ=0.59~1.0 to be compatible with massive neutron stars. As Xσ increases from 0.59 to 1.0, the maximum momentum of inertia(Imax) of neutron (protoneutron) stars increases by 89% (60%). According to the data of Crab, the maximum energy loss(dE/dt) of neutron (protoneutron) stars will increase by 44%(25%)and the maximum magnetic field (B) will increase by 48%(38%). I and dE/dt of PSR J0348+0432 both increase by 14%, while B decreases by 10% as Xσ increases from 0.59 to 1.0. So if the upper bound of I, or the accurate values of both the mass and I of neutron stars could be provided by the astronomical observations, the hyperon couplings should be further constrained in the future.
  • [1] BETHE H A. Rev Mod Phys, 1990, 62:801.
    [2] GLENDENNING N K. Compact stars:Nuclear Physics, Particle Ph and General Relativity[M]. New York:Springer:1997:206.
    [3] DEMOREST P B, PENNUCCI T, RANSOM S M, et al. Nature, 2010, 467:1081.
    [4] ANTONIADIS J, WHELAN D G. Science, 2013, 340(6131):448.
    [5] LI T P, XIONG S L, ZHANG S N, et al. Science China Physics Mechanics & Astronomy, 2018, 61:031011.
    [6] ABBOTT B P, et al. Phys Rev Lett, 2017, 119:161101.
    [7] JIANG W Z, LI B A, CHEN L W. Astrophys J, 2012, 756:56.
    [8] HARTLE J B. Astrophysics & Space Science, 1973, 24:385.
    [9] FATTOYEV F J, PIEKAREWICZ J. Phys Rev C, 2010, 82:025810.
    [10] HONG B, JIA H Y, MU X L, et al. Chin Phys C, 2016, 40:35.
    [11] ZHAO X F, JIA H Y. Journal of Astrophysics & Astronomy, 2012, 33:303.
    [12] DATTA B, RAY A. Monthly Notices of the Royal Astronomical Society, 1983, 204:75.
    [13] ZHAO Xianfeng, WANG Shunjing, ZHANG Hua, et al. Journal of Sichuan University(Natural Science Edition), 2009, 46(3):743. (in Chinese) (赵先锋, 王顺金, 张华, 等. 四川大学学报:自然科学版, 2009, 46(3):743.)
    [14] ZHAO Xianfeng, WANG Shunjing, ZHANG Hua, et al. Journal of Southwest University(Natural Science Edition), 2010, 32(7):46. (in Chinese) (赵先锋, 王顺金, 张华, 等. 西南大学学报(自然科学版), 2010, 32(7):46.)
    [15] ZHAO Xianfeng. Acta Astronomic Sinica, 2011, 52(2):126. (in Chinese) (赵先锋. 天文学报, 2011, 52(2):126.)
    [16] HEWISH A, OKOYE S E. Nature, 1964, 203:171
    [17] GLENDENNING N K, MOSZKOWSKI S A. Phys Rev Lett, 1991, 67:2414.
    [18] SCHAFFNER J, MISHUSTIN I N. Phys Rev C, 1996, 53:1416.
    [19] SCHAFFNER J, DOVER C B, GAL A, et al. Annals Phys, 1994, 235:35.
    [20] YANG F. SHEN H. Phys Rev C, 2008, 77:025801.
    [21] PACINI F. Nature, 1968, 219:45.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1494) PDF downloads(112) Cited by()

Proportional views

Can the Moment of Inertia of Massive Neutron Stars be Used to Constrain the Hyperon Couplings?

doi: 10.11804/NuclPhysRev.35.02.127
Funds:  Natural Science Fundamental Research Project of Jiangsu Colleges and Universities (Bk20140982); National Natural Science Foundation of China (11265009, 11175077, 11271055)

Abstract: In the framework of the relativistic mean field theory(RMFT) with GL91 cets, the momentum of inertia (I) of slowly rotating neutron stars is studied by perturbative approach. The scalar hyperon coupling should lie in the range of Xσ=0.59~1.0 to be compatible with massive neutron stars. As Xσ increases from 0.59 to 1.0, the maximum momentum of inertia(Imax) of neutron (protoneutron) stars increases by 89% (60%). According to the data of Crab, the maximum energy loss(dE/dt) of neutron (protoneutron) stars will increase by 44%(25%)and the maximum magnetic field (B) will increase by 48%(38%). I and dE/dt of PSR J0348+0432 both increase by 14%, while B decreases by 10% as Xσ increases from 0.59 to 1.0. So if the upper bound of I, or the accurate values of both the mass and I of neutron stars could be provided by the astronomical observations, the hyperon couplings should be further constrained in the future.

YU Zi, DING Wenbo, XU Yan, ZHANG Guiqing. Can the Moment of Inertia of Massive Neutron Stars be Used to Constrain the Hyperon Couplings?[J]. Nuclear Physics Review, 2018, 35(2): 127-132. doi: 10.11804/NuclPhysRev.35.02.127
Citation: YU Zi, DING Wenbo, XU Yan, ZHANG Guiqing. Can the Moment of Inertia of Massive Neutron Stars be Used to Constrain the Hyperon Couplings?[J]. Nuclear Physics Review, 2018, 35(2): 127-132. doi: 10.11804/NuclPhysRev.35.02.127
Reference (21)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return