Advanced Search

PENG Fuping, WU Yunben, ZHANG Xiaobing. Vortices in the Color-flavor Locked Quark Matter[J]. Nuclear Physics Review, 2018, 35(2): 133-139. doi: 10.11804/NuclPhysRev.35.02.133
Citation: PENG Fuping, WU Yunben, ZHANG Xiaobing. Vortices in the Color-flavor Locked Quark Matter[J]. Nuclear Physics Review, 2018, 35(2): 133-139. doi: 10.11804/NuclPhysRev.35.02.133

Vortices in the Color-flavor Locked Quark Matter

doi: 10.11804/NuclPhysRev.35.02.133
Funds:  National Natural Science Foundation of China(11175257)
  • Received Date: 2017-12-28
  • Rev Recd Date: 2018-02-07
  • Publish Date: 2018-06-20
  • The quark matter exhibits a rich phase structure at different temperatures and baryon number densities. At high baryon density and low temperature, the color-flavor locked phase is believed to be the ground state of the quark matter. We present an introduction to various vortices in the color-flavor locked quark matter, especially for the semi-superfluid vortices, and their research method (Ginzburg-Landau method). The influence of magnetic field and rotation on properties of these vortices is discussed. Due to the possibility of forming a semi-superfluid vortex in the core of the dense star, this result is of practical significance in the study of dense stars. If considering other factors, such as temperature and quark mass, study of the vortex structure properties in the quark matter could provide new perspectives for related fields, for instance dense star physics.
  • [1] ALFORD M, RAJAGOPAL K, WILCZEK F. Phys Lett B, 1998, 422(1-4):247.
    [2] SHIFMAN M. At The Frontier of Particle Physics:Handbook of QCD[M]. Sinapore:World Scientific, 2001.
    [3] IWASAKI M, IWADO T. Phys Lett B, 1995, 350(2):163.
    [4] RAPP R, SCH T, AUML, SHURYAK E, et al. Phys Rev Lett, 1997, 81:53.
    [5] ALFORD M, SCHMITT A, RAJAGOPAL K, et al. Rev Mod Phys, 2008, 80:1455.
    [6] FUKUSHIMA K, HATSUDA T. Rept Prog Phys, 2010, 74(1):14001.
    [7] RAJAGOPAL K, WILCZEK F. At The Frontier of Particle Physics[M]. Sinapore:World Scentific, 2001
    [8] GIANNAKIS I, REN H C. Nucl Phys B, 2003, 669(3):462.
    [9] MERMIN N D. Rev Mod Phys, 1979, 51(3):591.
    [10] VOLOVIK G E. The Universe in a Helium Droplet[M]. Oxford:Oxford University Press, 2009.
    [11] RAMAN C, ONOFRIO R, VOGELS J M, et al. J Low Temp Phys, 2001, 122(1-2):99.
    [12] ZWIERLEIN M W, ABO-SHAEER J R, SCHIROTZEK A, et al. Nature, 2005, 435(7045):1047.
    [13] PANG L G, PETERSEN H, WANG Q, et al. Phys Rev Lett, 2016, 117(19):192301.
    [14] MINORU E, YUJI H, MUNETO N, et al. Prog Theor Exp Phys, 2014, 2014(1):165.
    [15] LIFSHITZ E M, PITAEVSKⅡ L P. Course of Theoretical Physics:Satistical Physics:Theory of the Condensed State[M]. Sinapore:World Scientific, 1997.
    [16] GIANNAKIS I, REN H C. Phys Rev D, 2002, 65:0504017.
    [17] BALACHANDRAN A P, DIGAL S, MATSUURA T. Phys Rev D, 2012, 73:074009.
    [18] EIJI N, MUNETO N, TAEKO M. Phys Rev D, 2007, 78:045002.
    [19] ETO M, NITTA M. Phys Rev D, 2009, 80:125007.
    [20] IBRAHIM A I, MARKWARDT C B, SWANK J H, et al. Astrophys J, 2004, 609(1):L21.
    [21] KULKARNI S R, FRAIL D A, KASSIM N E, et al. Nature, 1994, 368(6467):129.
    [22] MURAKAMI T, TANAKA Y, KULKARNI S R, et al. Nature,1994, 368(6467):127.
    [23] LAI D, RASIO F, SHAPIRO S. Astrophys J, 1994423(1):344.
    [24] BOCQUET M, BONAZZOLA S, GOURGOULHON E, et al. Astrophys, 1995301(3):757.
    [25] ZHANG X B, BU Z C, PENG F P, et al. Nucl Phys A, 2015, 938:1.
    [26] ANDERSSON N, COMER G L, GROSART K. MNRAS, 2004, 355(3):918.
    [27] SEDRAKIAN D M, BLASCHKE D, SHAHABASYAN K M, et al. Astrophys, 2008, 51:544.
    [28] BEDAQUE P F, BERKOWITZ E, CHERMAN A. Phys Rev D, 2011, 84:023006.
    [29] FERRER E J, INCERA V L. Phys Rev D, 2007, 76:045011.
    [30] FERRER E J, INCERA V L. Phys Rev Lett, 2006, 97:122301.
    [31] ABRIKOSOV A A. Sov Phys JETP, 1957, 5:1174.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(2302) PDF downloads(117) Cited by()

Proportional views

Vortices in the Color-flavor Locked Quark Matter

doi: 10.11804/NuclPhysRev.35.02.133
Funds:  National Natural Science Foundation of China(11175257)

Abstract: The quark matter exhibits a rich phase structure at different temperatures and baryon number densities. At high baryon density and low temperature, the color-flavor locked phase is believed to be the ground state of the quark matter. We present an introduction to various vortices in the color-flavor locked quark matter, especially for the semi-superfluid vortices, and their research method (Ginzburg-Landau method). The influence of magnetic field and rotation on properties of these vortices is discussed. Due to the possibility of forming a semi-superfluid vortex in the core of the dense star, this result is of practical significance in the study of dense stars. If considering other factors, such as temperature and quark mass, study of the vortex structure properties in the quark matter could provide new perspectives for related fields, for instance dense star physics.

PENG Fuping, WU Yunben, ZHANG Xiaobing. Vortices in the Color-flavor Locked Quark Matter[J]. Nuclear Physics Review, 2018, 35(2): 133-139. doi: 10.11804/NuclPhysRev.35.02.133
Citation: PENG Fuping, WU Yunben, ZHANG Xiaobing. Vortices in the Color-flavor Locked Quark Matter[J]. Nuclear Physics Review, 2018, 35(2): 133-139. doi: 10.11804/NuclPhysRev.35.02.133
Reference (31)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return