Advanced Search

LI Zhongshan, DU Heng, YIN Xuejun, XIA Jiawen, YUAN Youjin, YANG Jiancheng, LI Xiaoni, LI Peng, LI Jie, ZHENG Wenheng, GE Wenwen, QU Guofeng, SHEN Guodong, ZHANG Xiaohu, QIAO Jian, WANG Kedong. RF Structure Design for CSR-LINAC IH-RFQ[J]. Nuclear Physics Review, 2018, 35(2): 140-146. doi: 10.11804/NuclPhysRev.35.02.140
Citation: LI Zhongshan, DU Heng, YIN Xuejun, XIA Jiawen, YUAN Youjin, YANG Jiancheng, LI Xiaoni, LI Peng, LI Jie, ZHENG Wenheng, GE Wenwen, QU Guofeng, SHEN Guodong, ZHANG Xiaohu, QIAO Jian, WANG Kedong. RF Structure Design for CSR-LINAC IH-RFQ[J]. Nuclear Physics Review, 2018, 35(2): 140-146. doi: 10.11804/NuclPhysRev.35.02.140

RF Structure Design for CSR-LINAC IH-RFQ

doi: 10.11804/NuclPhysRev.35.02.140
Funds:  Guangdong Innovative and Entrepreneurial Research Team Program (2016ZT06G373); National Natural Science Foundation of China (11375243, 11405237, 11475235)
  • Received Date: 2017-07-19
  • Rev Recd Date: 2017-10-12
  • Publish Date: 2018-06-20
  • The 108.48 MHz IH type RFQ for CSR-LINAC project is under design at Institute of Modern Physics, Chinese Academy of Sciences. This RFQ can accelerate heavy ions with mass to charge ratio of 3~7 from 4 keV/u to 300 keV/u. According to the beam dynamics requirement, the RF structure design has been finished. The quadrupole field unflatness and dipole field of the cavity were studied by electromagnetic simulation and beam dynamics simulation. The frequency of the cavity without tuning is 108.15 MHz, the Q0 of the cavity is 5910, and the RF power loss is 123 kW. The quadrupole field unflatness of ±2.5%,which was -21%~12% before optimizing, is achieved to meet dynamics requirement through the undercuts in cavity supporters. The dipole field of -3%~ -2.2% causes the oscillation of the beam center and acceptance reduction of 5%. The power coupler must be in critical coupling state with the coupling area of 940 mm2 for minimum reflection coefficient. The tuners, consist of coarse and fine tuners with frequency shift of 707 and 132 kHz respectively, is used for tuning of frequency deviation of the cavity.
  • [1] XIA Jiawen, ZHAN Wenlong, WEI Baowen, et al. Nucl Instr Meth A, 2002, 488(1):11.
    [2] ZHANG Xiaohu, YUAN Youjin, XIA Jiawen, et al. Chinese Physics C, 2014, 38(10):74.
    [3] ZHANG Xiaohu. Beam dynamics design and research of the Linac injectors in HIRFL[D]. Lanzhou:Institute of Modern Physics, Chinese Academy of Sciences, 2014:127. (in Chinese) (张小虎. HIRFL重离子直线注入器的动力学设计与研究[D]. 兰州:中国科学院近代物理研究所, 2014:127.)
    [4] JAMESON R A. NATO ASI Series B:Physics, 1988, 178:497.
    [5] LIU G, LU Y R, HE Y, et al. Nucl Instr Meth A, 2013, 701(3):186.
    [6] YIN X J, YUAN Y J, XIA J W, et al. Phys Rev ST Accel Beams, 2016, 19(1):010402.
    [7] LI C, SUN L, HE Y, et al. Nucl Instr Meth A, 2013, 729(1-2):426.
    [8] WANG Z J, HE Y, JIA H, et al. Proceedings of LINAC2012[C]. Tel-Aviv, Israel, 2012.
    [9] KLABUNDE J. Proceedings of the 1988 Linear Accelerator Conference[C]. Williamsburg, Virginia, USA, 2012.
    [10] KLABUNDE J. Proceedings of the 1992 Linear Accelerator Conference[C]. Ottawa, Ontario, Canada, 1992.
    [11] RATZINGER U, KASPAR K, MALWITZ E, et al. Nucl Instr Meth, 1998, 415(1):281.
    [12] KASPAR K, RATZINGER U. DESIGN OF THE GSI 36 MHZ RFQ ACCELERATOR ON THE BASE OF MAFIA CALCULATIONS, 1996.
    [13] KOSCIELNIAK S, LAXDAL R E, LEE R, et al. Particle Accelerator Conference, 1997[C]. Vancouver, British Columbia, Canada, 1997:1102.
    [14] LAXDAL R E, BAARTMAN R A, ROOT L. Proceedings of the 1999 Particle Accelerator Conference[C]. New York,1999:3534.
    [15] CRANDALL K R. Proceedings of the 1979 Linear Accelerator Conference[C]. Montauk, New York, USA, 1979:205.
    [16] ZHANG C, SCHEMPP A. Nucl Instr Meth A, 2008, 586(2):153.
    [17] ZHANG C, SCHEMPP A. Nucl Instr Meth A, 2009, 609(2-3):95.
    [18] CHUAN ZHANG. Linac Design for Intense Hadron Beams[D]. Frankfurt am Main, 2009(12):54.
    [19] KASPAR K, RATZINGER U. the 5th European Particle Accelerator Conference[C]. Sitges, Barcelona, Spain, 1996.
    [20] RATZINGER U, KASPAR K, MALWITZ E, et al. Nucl Instr Meth A, 1998, 415(1):281.
    [21] CST-Computer Simulation Technology. www.cst.com.
    [22] LIU Ge. Study on the Theoretical Design and Experimental Research of a Continuous Wave High Charge State Heavy Ion RFQ[D]. Beijing:Peking University, 2014:68. (in Chinese) (刘戈. 连续波高电荷态重离子RFQ加速器的理论设计与实验研究[D]. 北京大学, 2014:68.)
    [23] URIOT D. TraceWin[M]. CEA Saclay, 2013.
    [24] BAILEY R. Proceedings of the CAS-CERN Accelerator School:RF for accelerators, Ebeltoft, Denmark, 2011:125.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1391) PDF downloads(176) Cited by()

Proportional views

RF Structure Design for CSR-LINAC IH-RFQ

doi: 10.11804/NuclPhysRev.35.02.140
Funds:  Guangdong Innovative and Entrepreneurial Research Team Program (2016ZT06G373); National Natural Science Foundation of China (11375243, 11405237, 11475235)

Abstract: The 108.48 MHz IH type RFQ for CSR-LINAC project is under design at Institute of Modern Physics, Chinese Academy of Sciences. This RFQ can accelerate heavy ions with mass to charge ratio of 3~7 from 4 keV/u to 300 keV/u. According to the beam dynamics requirement, the RF structure design has been finished. The quadrupole field unflatness and dipole field of the cavity were studied by electromagnetic simulation and beam dynamics simulation. The frequency of the cavity without tuning is 108.15 MHz, the Q0 of the cavity is 5910, and the RF power loss is 123 kW. The quadrupole field unflatness of ±2.5%,which was -21%~12% before optimizing, is achieved to meet dynamics requirement through the undercuts in cavity supporters. The dipole field of -3%~ -2.2% causes the oscillation of the beam center and acceptance reduction of 5%. The power coupler must be in critical coupling state with the coupling area of 940 mm2 for minimum reflection coefficient. The tuners, consist of coarse and fine tuners with frequency shift of 707 and 132 kHz respectively, is used for tuning of frequency deviation of the cavity.

LI Zhongshan, DU Heng, YIN Xuejun, XIA Jiawen, YUAN Youjin, YANG Jiancheng, LI Xiaoni, LI Peng, LI Jie, ZHENG Wenheng, GE Wenwen, QU Guofeng, SHEN Guodong, ZHANG Xiaohu, QIAO Jian, WANG Kedong. RF Structure Design for CSR-LINAC IH-RFQ[J]. Nuclear Physics Review, 2018, 35(2): 140-146. doi: 10.11804/NuclPhysRev.35.02.140
Citation: LI Zhongshan, DU Heng, YIN Xuejun, XIA Jiawen, YUAN Youjin, YANG Jiancheng, LI Xiaoni, LI Peng, LI Jie, ZHENG Wenheng, GE Wenwen, QU Guofeng, SHEN Guodong, ZHANG Xiaohu, QIAO Jian, WANG Kedong. RF Structure Design for CSR-LINAC IH-RFQ[J]. Nuclear Physics Review, 2018, 35(2): 140-146. doi: 10.11804/NuclPhysRev.35.02.140
Reference (24)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return