Advanced Search

ZHAO Cong, HUANG Kejing, LYU Shuangbao, XU Guoheng, CHENG Hongwei, LIU Jie, YAO Huijun, SUN Youmei, XU Lijun, DUAN Jinglai. Surface Plasmon Resonances of Palladium Nanowire Arrays Prepared by Ion Track Technology[J]. Nuclear Physics Review, 2018, 35(3): 313-320. doi: 10.11804/NuclPhysRev.35.03.313
Citation: ZHAO Cong, HUANG Kejing, LYU Shuangbao, XU Guoheng, CHENG Hongwei, LIU Jie, YAO Huijun, SUN Youmei, XU Lijun, DUAN Jinglai. Surface Plasmon Resonances of Palladium Nanowire Arrays Prepared by Ion Track Technology[J]. Nuclear Physics Review, 2018, 35(3): 313-320. doi: 10.11804/NuclPhysRev.35.03.313

Surface Plasmon Resonances of Palladium Nanowire Arrays Prepared by Ion Track Technology

doi: 10.11804/NuclPhysRev.35.03.313
Funds:  Key Research Program of Frontier Sciences, CAS (QYZDB-SSW-SLH010); National Natural Science Foundation of China (11375241, 11474240, 11575261)
  • Received Date: 2018-04-13
  • Rev Recd Date: 2018-05-17
  • Publish Date: 2018-09-20
  • Palladium nanowires with varied diameters were fabricated using ion-track templates coupled with electrochemical deposition. The morphology and crystallographic structure were characterized with Scanning Electron Microscopy, Transmission Electron Microscopy, X-ray diffraction (XRD). The plasmonic responses of the as-prepared nanowires were investigated by UV-Vis-NIR spectroscopy and the simulations based on the finite-difference time-domain algorithm. The results demonstrate that the surface plasmon resonances of Pd nanowire are sensitive to the wire geometry, but also influenced by the incidence angle of light. The frequency of the transverse dipolar plasmon resonance of nanowire arrays shifts within a wide range from visible to near infrared. With increasing of wires' diameter or length, the resonance peak shifts to the red. With increasing of incident angle, a new peak appears, which is possibly assigned to the excitation of the longitudinal resonance. In addition, numerical simulations disclose that propagating surface plasmon polaritons can be excited on the palladium nanowires and the wavelength of the resonance peak is in good agreement with the experimental results.
  • [1] STEWART M E, ANDERTON C R, THOMPSON L B, et al. Chemical Reviews, 2008, 108(2):494.
    [2] TSUJI J. Palladium Reagents and Catalysts:New Perspectives for the 21st Century[M]. Hoboken:John Wiley & Sons, 2006.
    [3] FLANAGAN T B, OATES W A. Annual Review of Materials Science, 1991, 21(1):269.
    [4] HÜBERT T, BOON B L, BLACK G, et al. Sensors and Actuators B:Chemical, 2011, 157(2):329.
    [5] ZORIC I, LARSSON E M, KASEMO B, et al. Advanced Materials, 2010, 22(41):4628.
    [6] LIU N, TANG M L, HENTSCHEL M, et al. Nature Materials, 2011, 10(8):631.
    [7] KREIBIG U, VOLLMER M. Theoretical Considerations[M]. Berlin:Springer, Heidelberg, 1995:13.
    [8] GU F, ZENG H, ZHU Y B, et al. Advanced Optical Materials, 2014, 2(2):189.
    [9] DUAN J L, CORNELIUS T W, LIU J, et al. Journal of Physical Chemistry C, 2009, 113(31):13583.
    [10] TASALTIN N, ÖZTÜRK S, KILINC N, et al. Nanoscale Research Letters, 2010, 5(7):1137.
    [11] CHENG F, WANG H, SUN Z, et al. Electrochemistry Communications, 2008, 10(5):798.
    [12] XU C W, WANG H, SHEN P K, et al. Advanced Materials, 2007, 19(23):4256.
    [13] KARTOPU G, HABOUTI S, ES-SOUNI M. Materials Chemistry and Physics, 2008, 107(2-3):226.
    [14] WANG H, XU C, CHENG F, et al. Electrochemistry Communications, 2007, 9(5):1212.
    [15] CHEREVKO S, FU J, KULYK N, et al. Journal of Nanoscience and Nanotechnology, 2009, 9(5):3154.
    [16] KIM K, KIM M, CHO S M. Materials Chemistry and Physics, 2006, 96(2-3):278.
    [17] KOENIGSMANN C, SANTULLI A C, SUTTER E, et al. ACS Nano, 2011, 5(9):7471.
    [18] ZHANG L, GUO S, DONG S, et al. Analytical Chemistry, 2012, 84(8):3568.
    [19] MENKE E J, THOMPSON M A, XIANG C, et al. Nature Materials, 2006, 5(11):914.
    [20] INGUANTA R, PIAZZA S, SUNSERI C. Electrochemistry Communications, 2009, 11(7):1385.
    [21] KANG H, JUN Y, PARK J I, et al. Chemistry of Materials, 2000, 12(12):3530.
    [22] SHI Z, WU S, SZPUNAR J A. Nanotechnology, 2006, 17(9):2161.
    [23] DUAN J, LYU S, YAO H, et al. Nanoscale Research Letters, 2015, 10(1):481.
    [24] STEWART M E, ANDERTON C R, THOMPSON L B, et al. Chemical Reviews, 2008, 108(2):494.
    [25] TSUJI J. Palladium Reagents and Catalysts:New Perspectives for the 21st Century[M]. Hoboken:John Wiley & Sons, 2006.
    [26] FLANAGAN T B, OATES W A. Annual Review of Materials Science, 1991, 21(1):269.
    [27] VAN Der Zande, BIANCA M I, FOKKINK L G, et al. Langmuir, 2000, 16(2):451.
    [28] ATAY T, SONG J H, NURMIKKO A V. Nano Letters, 2004, 4(9):1627.
    [29] WEI Q H, SU K H, DURANT S, et al. Nano Letters, 2004, 4(6):1067.
    [30] KOTTMANN J P, MARTIN O J F. Optics Express, 2001, 8(12):655.
    [31] SU K H, WEI Q H, ZHANG X, et al. Nano Letters, 2003, 3(8):1087.
    [32] JAIN P K, HUANG W, EL-SAYED M A. Nano Letters, 2007, 7(7):2080.
    [33] JAIN P K, EL-SAYED M A. Nano Letters, 2007, 7(9):2854.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1384) PDF downloads(110) Cited by()

Proportional views

Surface Plasmon Resonances of Palladium Nanowire Arrays Prepared by Ion Track Technology

doi: 10.11804/NuclPhysRev.35.03.313
Funds:  Key Research Program of Frontier Sciences, CAS (QYZDB-SSW-SLH010); National Natural Science Foundation of China (11375241, 11474240, 11575261)

Abstract: Palladium nanowires with varied diameters were fabricated using ion-track templates coupled with electrochemical deposition. The morphology and crystallographic structure were characterized with Scanning Electron Microscopy, Transmission Electron Microscopy, X-ray diffraction (XRD). The plasmonic responses of the as-prepared nanowires were investigated by UV-Vis-NIR spectroscopy and the simulations based on the finite-difference time-domain algorithm. The results demonstrate that the surface plasmon resonances of Pd nanowire are sensitive to the wire geometry, but also influenced by the incidence angle of light. The frequency of the transverse dipolar plasmon resonance of nanowire arrays shifts within a wide range from visible to near infrared. With increasing of wires' diameter or length, the resonance peak shifts to the red. With increasing of incident angle, a new peak appears, which is possibly assigned to the excitation of the longitudinal resonance. In addition, numerical simulations disclose that propagating surface plasmon polaritons can be excited on the palladium nanowires and the wavelength of the resonance peak is in good agreement with the experimental results.

ZHAO Cong, HUANG Kejing, LYU Shuangbao, XU Guoheng, CHENG Hongwei, LIU Jie, YAO Huijun, SUN Youmei, XU Lijun, DUAN Jinglai. Surface Plasmon Resonances of Palladium Nanowire Arrays Prepared by Ion Track Technology[J]. Nuclear Physics Review, 2018, 35(3): 313-320. doi: 10.11804/NuclPhysRev.35.03.313
Citation: ZHAO Cong, HUANG Kejing, LYU Shuangbao, XU Guoheng, CHENG Hongwei, LIU Jie, YAO Huijun, SUN Youmei, XU Lijun, DUAN Jinglai. Surface Plasmon Resonances of Palladium Nanowire Arrays Prepared by Ion Track Technology[J]. Nuclear Physics Review, 2018, 35(3): 313-320. doi: 10.11804/NuclPhysRev.35.03.313
Reference (33)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return