Advanced Search
Volume 35 Issue 4
May  2020
Turn off MathJax
Article Contents

J. P. Draayer, K. D. Launey, A. C. Dreyfuss, T. Dytrych, G. H. Sargsyan, R. B. Baker, D. Kekejian. Symmetry-adapted No-core Shell-model Calculations for Probing the Structure of Atomic Nuclei[J]. Nuclear Physics Review, 2018, 35(4): 350-355. doi: 10.11804/NuclPhysRev.35.04.350
Citation: J. P. Draayer, K. D. Launey, A. C. Dreyfuss, T. Dytrych, G. H. Sargsyan, R. B. Baker, D. Kekejian. Symmetry-adapted No-core Shell-model Calculations for Probing the Structure of Atomic Nuclei[J]. Nuclear Physics Review, 2018, 35(4): 350-355. doi: 10.11804/NuclPhysRev.35.04.350

Symmetry-adapted No-core Shell-model Calculations for Probing the Structure of Atomic Nuclei

doi: 10.11804/NuclPhysRev.35.04.350
Funds:  U.S. NSF (OIA-1738287, ACI -1713690) and Czech SF (16-16772S)
  • Received Date: 2018-10-05
  • Publish Date: 2020-05-03
  • Exploiting special symmetries to unmask simplicity within complexity that remains the "holy grail" of nuclear theory is re-examined within the framework of its historical context and current ab initio nocore shell-model approaches that exploit high-performance computing resources and applied math methodologies. Examples using the symmetry-adapted no-core shell model (SA-NCSM) that clearly demonstrate the important role group theory plays in this evolving story will serve to elucidate current state-of-the-art developments in this arena, including comparisons of excitation spectra and transition rates with experimental results for light and medium-mass nuclei. An interesting extension of the SA-NCSM, an advanced method with a novel twist that enables one to incorporate deformation from the onset, will be proffered as a further way to manage the combinatorial growth of model-space dimensionalities that remains the nemesis of all theories that seek an ab initio understanding of nuclear collectivity, and in so doing extends applicability of the theory to heavier and more exotic nuclear species.
  • [1] WIRINGA R B, STOKS V G J, SCHIAVILLA R. Phys Rev C, 1995, 51:38.
    [2] MACHLEIDT R. Phys Rev C, 2001, 63:024001.
    [3] ENTEM D R, MACHLEIDT R. Phys Rev C, 2003, 68:041001.
    [4] EPELBAUM E, KREBS H, MEINER U G. Phys Rev Lett, 2015, 115:122301.
    [5] MAYER M G. Phys Rev, 1949, 75:1969.
    [6] HAXEL O, JENSEN J H D, SUESS H E. Phys Rev, 1949, 75:1766.
    [7] NAVRATIL P, VARY J P, BARRETT B R. Phys Rev Lett, 2000, 84:5728.
    [8] BARRETT B R, NAVRATIL P, VARY J P. Prog Part Nucl Phys, 2013, 69:131.
    [9] NAVRATIL P, QUAGLIONI S, STETCU I, et al. J Phys G:Nucl Part, 2009, 36:083101.
    [10] ROUTH R, NAVRATIL P. Phys Rev Lett, 2007, 99:092501.
    [11] ABE T, MARRIS P, OTSUKA T, et al. Phys Rev C, 2012, 86:054301.
    [12] ROSENSTEEL G, DRAAYER J P, WEEKS K J. Nucl Phys A, 1984, 419:1.
    [13] ROSENSTEEL G, ROWE D J. Phys Rev Lett, 1977, 38:10.
    [14] ROWE D J. Rep Prog. Phys, 1985, 48:1419.
    [15] BAHRI C, ROWE D J. Nucl Phys A, 2000, 662:125.
    [16] BOHR A, MOTTELSON B R. Nuclear Structure[M]. New York:Benjamin, 1969.
    [17] ELLIOTT J P. Proc Roy Soc A, 1958, 245:128.
    [18] ELLIOTT J P, HARVEY M. Proc Roy Soc A, 1963, 272:557.
    [19] BAHRI C, DRAAYER J P, MOSZKOWSKI S. Phys Rev Lett, 1992, 68:2133.
    [20] ZUKER A, RETAMOSA J, POVES A, et al. Phys Rev C, 1995, 52:R1741.
    [21] ROWE D J. AIP Conf Proc, 2013, 1541:104.
    [22] LAUNEY K D, DYTRYCH T, DRAAYER J P. Prog Part Nucl Phys, 2016, 89:101.
    [23] DYTRYCH T, LAUNEY K D, DRAAYER J P, et al. Phys Rev Lett, 2013, 111:252501.
    [24] DREYFUSS A C, LAUNEY K D, DYTRYCH T, et al. Phys Lett B, 2013, 727:511.
    [25] DYTRYCH T, SVIRATCHEVA K D, DRAAYER J P, et al. J Phys G:Nucl Part Phys, 2008, 35:123101.
    [26] ELLIOTT J P. Proc Roy Soc A, 1958, 245:562.
    [27] LAUNEY K D, DREYFUSS A C, DRAAYER J P, et al. J Phys:Conf Ser, 2014, 569:012061.
    [28] ROSENSTEEL G, DRAAYER J P. Nucl Phys A, 1985, 436:445.
    [29] ROWE D J. Phys Rev, 1967, 162:866.
    [30] ROWE D J, THIAMOVA G, WOOD J L. Phys Rev Lett, 2006, 97:202501.
    [31] DREYFUSS A C, LAUNEY K D, DYTRYCH T, et al. Phys Rev C, 2017, 95:044312.
    [32] TOBIN G K, FERRISS M C, LAUNEY K D, et al. Phys Rev C, 2014, 89:034312.
    [33] LAUNEY K D, DYTRYCH T, DRAAYER J P, et al. Symmetry Adapted No-core Shell Model for Light Nuclei, in Proceedings of the 5th International Conference on Fission and Properties of Neutron-rich Nuclei, ICFN5, November 4-10, 2012, Sanibel Island, Florida, eds. J. H. Hamilton and A. V. Ramayya, Singapore:World Scientific, 2013.
    [34] EKSTRÖM A, BAARDSEN G, FORSSÉN C, et al. Phys Rev Lett, 2013, 110:192502.
    [35] KEKEJIAN D, DRAAYER J P, LAUNEY K D. Deformed basis manyparticle theory revisited, NS2018 Nuclear Structure Conference, Michigan State University, August, 2018.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1173) PDF downloads(119) Cited by()

Proportional views

Symmetry-adapted No-core Shell-model Calculations for Probing the Structure of Atomic Nuclei

doi: 10.11804/NuclPhysRev.35.04.350
Funds:  U.S. NSF (OIA-1738287, ACI -1713690) and Czech SF (16-16772S)

Abstract: Exploiting special symmetries to unmask simplicity within complexity that remains the "holy grail" of nuclear theory is re-examined within the framework of its historical context and current ab initio nocore shell-model approaches that exploit high-performance computing resources and applied math methodologies. Examples using the symmetry-adapted no-core shell model (SA-NCSM) that clearly demonstrate the important role group theory plays in this evolving story will serve to elucidate current state-of-the-art developments in this arena, including comparisons of excitation spectra and transition rates with experimental results for light and medium-mass nuclei. An interesting extension of the SA-NCSM, an advanced method with a novel twist that enables one to incorporate deformation from the onset, will be proffered as a further way to manage the combinatorial growth of model-space dimensionalities that remains the nemesis of all theories that seek an ab initio understanding of nuclear collectivity, and in so doing extends applicability of the theory to heavier and more exotic nuclear species.

J. P. Draayer, K. D. Launey, A. C. Dreyfuss, T. Dytrych, G. H. Sargsyan, R. B. Baker, D. Kekejian. Symmetry-adapted No-core Shell-model Calculations for Probing the Structure of Atomic Nuclei[J]. Nuclear Physics Review, 2018, 35(4): 350-355. doi: 10.11804/NuclPhysRev.35.04.350
Citation: J. P. Draayer, K. D. Launey, A. C. Dreyfuss, T. Dytrych, G. H. Sargsyan, R. B. Baker, D. Kekejian. Symmetry-adapted No-core Shell-model Calculations for Probing the Structure of Atomic Nuclei[J]. Nuclear Physics Review, 2018, 35(4): 350-355. doi: 10.11804/NuclPhysRev.35.04.350
Reference (35)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return