Advanced Search
Volume 35 Issue 4
May  2020
Turn off MathJax
Article Contents

ZHAO Jianwei, SUN Baohua. Progress of the Charge-changing Cross Section Measurements of Exotic Nuclei at RIBLL2[J]. Nuclear Physics Review, 2018, 35(4): 362-368. doi: 10.11804/NuclPhysRev.35.04.362
Citation: ZHAO Jianwei, SUN Baohua. Progress of the Charge-changing Cross Section Measurements of Exotic Nuclei at RIBLL2[J]. Nuclear Physics Review, 2018, 35(4): 362-368. doi: 10.11804/NuclPhysRev.35.04.362

Progress of the Charge-changing Cross Section Measurements of Exotic Nuclei at RIBLL2

doi: 10.11804/NuclPhysRev.35.04.362
Funds:  National Natural Science Foundation of China (U183220043, 11475014); National Key Program for S&T Research and Development (2016YFA0400504)
  • Received Date: 2018-10-02
  • Rev Recd Date: 2018-11-29
  • Publish Date: 2020-05-03
  • Charge radius is one of the most fundamental observables of atomic nuclei, reflecting the proton distributions in nuclei. Their precision measurements have severed as a key tool to study nuclear structure. Recently, a novel method to deduce charge radii has been developed via precise measurements of charge-changing cross sections(CCCS) of exotic nuclei at relativistic energies. This method is in particular suitable for investigation of exotic nuclei with low production yield. In 2013, we proposed to make such measurements for exotic nuclei lighter than oxygen based on the RIBLL2 beam line. Since then, the TOF-△E detector system for particleidentification(PID) and the CCCS platform have been constructed, continuously optimized and tested. So far CCCS measurements on a carbon target have been performed for more than 20 isotopes. In this contribution, we will introduce the progress of detector development, the progress in PID, and our experimental progress and plan.
  • [1] SUN B H, LU Y, PENG J P, et al. Phys Rev C, 2014, 90:054318 and references therein.
    [2] BROWN B A. Phys Rev Lett, 2000, 85:5296.
    [3] SUN B H, LIU C Y, WANG H X. Phys Rev C, 2017, 95:014307.
    [4] NÖRTERSHÄUSER W, TIEDEMANN D, ŽÁKOVÁ M, et al. Phys Rev Lett, 2009, 102:062503.
    [5] KRIEGER A, BLAUM K, BISSELL M L, et al. Phys Rev Lett, 2012, 108:142501.
    [6] TRAN D T, ONG H J, HAGEN G, et al. Nature Communication, 2018, 9:1594.
    [7] GARCIARUIZ R F, BISSELL M L, BLAUM K, et al. Nature Physics, 2016, 12(6):594.
    [8] ZENG J Y. Acta Physica Sinica, 1975, 24:151. (in Chinese) (曾谨言. 物理学报, 1975, 24:151.)
    [9] ZHANG S Q, MENG J, ZHOU S G, et al. High Energy Physics and Nuclear Physics, 2002, 26(3):252. (in Chinese) (张双全, 孟杰, 周善贵, 等. 高能物理与核物, 2002, 26(3):252.)
    [10] LEI Y A, ZENG J Y. High Energy Physics and Nuclear Physics, 2007, 31(8):731. (in Chinese) (雷亦安, 曾谨言. 高能物理与核物理, 2007, 31(8):731.)
    [11] LEI Y A, ZHANG Z H, ZENG J Y. Commun Theor Phys, 2009, 51:123.
    [12] ZHANG S Q, MENG J, ZHOU S G, et al. Euro Phys J A, 2002, 13:285.
    [13] XIA X W, LIM Y, ZHAO P W, et al. Atomic Data and Nuclear Data Tables, 2018, 121-122:1.
    [14] WANG N, LI T. Phys Rev C, 2013, 88:011301(R).
    [15] NI D D, REN Z Z, DONG T K, et al. Phys Rev C, 2013, 87:024310.
    [16] QIAN Y B, REN Z Z, NI D D. Phys Rev C, 2013, 87:054323.
    [17] ZHOU S G, MENG J, RING P, et al. Phys Rev C, 2010, 82:011301(R).
    [18] MENG J, TOKI H, ZHOU S G, et al. Prog Part Nucl. Phys, 2006, 57:470.
    [19] SUN X X, ZHAO J, ZHOU S G. Phys Lett B, 2018, 785:530.
    [20] MENG J, ZHOU S G. J Phys G:Nucl Part Phys, 2015, 42:093101.
    [21] HAGEN G, EKSTRÖM A FORSSEN C, et al. Nature Physics, 2016, 12:186.
    [22] SUN Z H, WU Q, ZHAO Z H, et al. Phys Lett B, 2017, 769:227.
    [23] SHEN S H, LIANG H Z, MENG J, et al. Phys Rev C, 2017, 96:014316.
    [24] TSUKADA K, ENOKIZONO A, OHNISHI T, et al. Phys Rev Lett, 2017, 118:262501.
    [25] OZAWA A, BOCHKAREV O, CHULKOV L, et al. Nuclear Physics A 2001, 691:599.
    [26] YAMAGUCHI T, HACHIUMA I, KITAGAWA A, et al. Phys Rev Lett, 2011, 107:032502.
    [27] ESTRADE A, KANUNGO R, HORIUCHI W, et al. Phys Rev Lett, 2014, 113:132501.
    [28] TERASHIMA S, TANIHATA I, KANUNGO R, et al. Prog Theor Exp Phys, 2013, 101D02.
    [29] OZAWA A, MORIGUCHI T, OHTSUBO T, et al. Phys Rev C, 2014, 89:044602.
    [30] KANUNGO R, HORIUCHI W, HAGEN G, et al. Phys Rev Lett, 2016, 117:102501.
    [31] ZHAO J W, SUN B H, TANIHATA I, et al. Nucl Instr Meth A, 2016, 823:41.
    [32] LIN W J, ZHAO J W, SUN B H, et al. Chinese Physics C, 2017, 41(6):066001.
    [33] ZHANG X, HU R J, LU C G, et al. Nuclear Physics Review, 2017, 34(3):591. (in Chinese). (张兴, 胡荣江, 鲁辰桂, 等. 原子核物理评论, 2017, 34(3):591.)
    [34] KIMURA K, IZUMIKAWA T, KOYAMA R, et al. Nucl Instr Meth A, 2005, 538:608.
    [35] ZHANG X H, TANG S W, MA P, et al. Nucl Instr Meth A, 2015, 795:389.
    [36] CAEN Elecronic Instrumentation:VME modules.
    [37] SUN B H, ZHAO J W, ZHANG X H, et al. Science Bulletin, 2018, 63:78.
    [38] ANGELI I, MARINOVA K P. Atomic Data and Nuclear Data Tables, 2013, 99:69.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1748) PDF downloads(229) Cited by()

Proportional views

Progress of the Charge-changing Cross Section Measurements of Exotic Nuclei at RIBLL2

doi: 10.11804/NuclPhysRev.35.04.362
Funds:  National Natural Science Foundation of China (U183220043, 11475014); National Key Program for S&T Research and Development (2016YFA0400504)

Abstract: Charge radius is one of the most fundamental observables of atomic nuclei, reflecting the proton distributions in nuclei. Their precision measurements have severed as a key tool to study nuclear structure. Recently, a novel method to deduce charge radii has been developed via precise measurements of charge-changing cross sections(CCCS) of exotic nuclei at relativistic energies. This method is in particular suitable for investigation of exotic nuclei with low production yield. In 2013, we proposed to make such measurements for exotic nuclei lighter than oxygen based on the RIBLL2 beam line. Since then, the TOF-△E detector system for particleidentification(PID) and the CCCS platform have been constructed, continuously optimized and tested. So far CCCS measurements on a carbon target have been performed for more than 20 isotopes. In this contribution, we will introduce the progress of detector development, the progress in PID, and our experimental progress and plan.

ZHAO Jianwei, SUN Baohua. Progress of the Charge-changing Cross Section Measurements of Exotic Nuclei at RIBLL2[J]. Nuclear Physics Review, 2018, 35(4): 362-368. doi: 10.11804/NuclPhysRev.35.04.362
Citation: ZHAO Jianwei, SUN Baohua. Progress of the Charge-changing Cross Section Measurements of Exotic Nuclei at RIBLL2[J]. Nuclear Physics Review, 2018, 35(4): 362-368. doi: 10.11804/NuclPhysRev.35.04.362
Reference (38)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return