Advanced Search
Volume 35 Issue 4
May  2020
Turn off MathJax
Article Contents

LIANG Haozhao, SHEN Shihang, WANG Zhiheng. Effects of Tensor Force in Covariant Density Functional Theory[J]. Nuclear Physics Review, 2018, 35(4): 390-400. doi: 10.11804/NuclPhysRev.35.04.390
Citation: LIANG Haozhao, SHEN Shihang, WANG Zhiheng. Effects of Tensor Force in Covariant Density Functional Theory[J]. Nuclear Physics Review, 2018, 35(4): 390-400. doi: 10.11804/NuclPhysRev.35.04.390

Effects of Tensor Force in Covariant Density Functional Theory

doi: 10.11804/NuclPhysRev.35.04.390
Funds:  Japan Society for the Promotion of Science (18K13549); National Natural Science Foundation of China-Japan Society for the Promotion of Science Bilateral Program (11711540016)
  • Received Date: 2018-09-20
  • Rev Recd Date: 2018-10-24
  • Publish Date: 2020-05-03
  • Tensor force is one of the most important components of the nucleon-nucleon interaction. It plays a critical role in understanding the shell evolution in exotic nuclei. However, there are still several puzzles concerning the tensor force and its effects in the nuclear medium. In this paper, we mainly focus on the studies of tensor force in the effective interactions and its effects in finite nuclear systems within the scheme of nuclear density functional theory. In particular, we highlight the recent developments, including the quantitative analysis of tensor effects in the relativistic Hartree-Fock theory by taking the evolution of proton magic shells in the isotopic chains as an example, and the "meta-data" of tensor effects provided by the ab initio relativistic Brueckner-Hartree-Fock theory by taking the evolution of spin-orbit splitting in the single-particle spectra of neutron drops as an example. Perspectives are focused on the possible strategies for the future developments of nuclear density functional theory.
  • [1] YUKAWA H. Proc Phys Math Soc Japan, 1935, 17:48.
    [2] RARITA W, SCHWINGER J. Phys Rev, 1941, 59:436.
    [3] SORLIN O, PORQUET M G. Prog Part Nucl Phys, 2008, 61:602.
    [4] WIENHOLTZ F, BECK D, BLAUM K, et al. Nature, 2013, 498:346.
    [5] STEPPENBECK D, TAKEUCHI S, AOI N, et al. Nature, 2013, 502:207.
    [6] OTSUKA T, GADE A, SORLIN O, et al. ArXiv:1805.06501[nucl-th], 2018.
    [7] OTSUKA T, SUZUKI T, FUJIMOTO R, et al. Phys Rev Lett, 2005, 95:232502.
    [8] BENDER M, HEENEN P H, REINHARD P G. Rev Mod Phys, 2003, 75:121.
    [9] MENG J, TOKI H, ZHOU S G, et al. Prog Part Nucl Phys, 2006, 57:470.
    [10] NAKATSUKASA T, MATSUYANAGI K, MATSUO M, et al. Rev Mod Phys, 2016, 88:045004.
    [11] XIA X W, LIM Y, ZHAO P W, et al. At Data Nucl Data Tables, 2018, 121-122:1.
    [12] STANCU F, BRINK D M, FLOCARD H. Phys Lett B, 1977, 68:108.
    [13] BERGER J F, GIROD M, GOGNY D. Comput Phys Commun, 1991, 63:365.
    [14] MENG J. (ed.). Relativistic Density Functional for Nuclear Structure (International Review of Nuclear Physics, Vol. 10). Singapore:World Scientific, 2016.
    [15] SCHIFFER J P, FREEMAN S J, CAGGIANO J A, et al. Phys Rev Lett, 2004, 92:162501.
    [16] COTTLE P D, KEMPER K W. Phys Rev C, 1998, 58:3761.
    [17] OTSUKA T, MATSUO T, ABE D. Phys Rev Lett, 2006, 97:162501.
    [18] BROWN B A, DUGUET T, OTSUKA T, et al. Phys Rev C, 2006, 74:061303.
    [19] BRINK D M, STANCU F. Phys Rev C, 2007, 75:064311.
    [20] COLÒ G, SAGAWA H, FRACASSO S, et al. Phys Lett B, 2007, 646:227.
    [21] ZOU W, COLÒ G, MA Z Y, et al. Phys Rev C, 2008, 77:014314.
    [22] ANGUIANO M, GRASSO M, CO'G, et al. Phys Rev C, 2012, 86:054302.
    [23] LONG W H, SAGAWA H, VAN GIAI N, et al. Phys Rev C, 2007, 76:034314.
    [24] LONG W H, SAGAWA H, MENG J, et al. Europhys Lett, 2008, 82:12001.
    [25] WANG L J, DONG J M, LONG W H. Phys Rev C, 2013, 87:047301.
    [26] MARCOS S, LOPEZ-QUELLE M, NIEMBRO R, et al. Phys At Nucl, 2014, 77:299.
    [27] LOPEZ-QUELLE M, MARCOS S, NIEMBRO R, et al. Nucl Phys A, 2018, 971:149.
    [28] TARPANOV D, LIANG H Z, VAN GIAI N, et al. Phys Rev C, 2008, 77, 054316.
    [29] MORENO-TORRES M, GRASSO M, LIANG H Z, et al. Phys Rev C, 2010, 81:064327.
    [30] BAI C L, SAGAWA H, ZHANG H Q, et al. Phys Lett B, 2009, 675:28.
    [31] BAI C L, ZHANG H Q, SAGAWA H, et al. Phys Rev Lett, 2010, 105:072501.
    [32] CAO L G, COLÒ G, SAGAWA H, et al. Phys Rev C, 2009, 80:064304.
    [33] MINATO F, BAI C L. Phys Rev Lett, 2010, 110:122501.
    [34] SAGAWA H, COLÒ G. Prog Part Nucl Phys, 2014, 76:76.
    [35] LALAZISSIS G A, KARATZIKOS S, SERRA M, et al. Phys Rev C, 2009, 80:041301(R).
    [36] LITVINOVA E V, AFANASJEV A V. Phys Rev C, 2011, 84:014305.
    [37] CAO L G, COLÒ G, SAGAWA H, et al. Phys Rev C, 2014, 89:044314.
    [38] AFANASJEV A V, LITVINOVA E. Phys Rev C, 2015, 92:044317.
    [39] WAKASA T, OKAMOTO M, DOZONO M, et al. Phys. Rev. C 85, 064606(2012).
    [40] LIANG H Z, ZHAO P W, MENG J. Phys Rev C, 2012, 85:064302.
    [41] LIANG H Z, VAN GIAI N, MENG J. Phys Rev Lett, 2008, 101:122502.
    [42] WANG Z H. Analysis of Tensor-Force Effects in Covariant Density Functional Theory[D]. Lanzhou:Lanzhou University, 2018. (in Chinese) (王之恒. 协变密度泛函理论中的张量力效应研究[D]. 兰州:兰州大学, 2018.)
    [43] WANG Z H, ZHAO Q, LIANG H Z, et al. Phys. Rev. C, 2018, 98:034313.
    [44] SHEN S H. Relativistic Brueckner-Hartree-Fock Theory for Finite Nuclei[D]. Beijing:Peking University, 2017. (in Chinese) (申时行. 原子核的相对论Brueckner-Hartree-Fock理论[D]. 北京:北京大学, 2017.)
    [45] SHEN S H, HU J N, LIANG H Z, et al. Chin Phys Lett, 2016, 33:102103.
    [46] SHEN S H, LIANG H Z, MENG J, et al. Phys Rev C, 2017, 96:014316.
    [47] SHEN S H, LIANG H Z, MENG J, et al. Phys Lett B, 2018, 778:344.
    [48] SHEN S H, LIANG H Z, MENG J, et al. Phys Rev C, 2018, 97:054312.
    [49] SHEN S H, LIANG H Z, MENG J, et al. Phys Lett B, 2018, 781:227.
    [50] JIANG L J, YANG S, SUN B Y, et al. Phys Rev C, 2015, 91:034326.
    [51] JIANG L J, YANG S, DONG J M, et al. Phys Rev C, 2015, 91:025802.
    [52] LONG W H, VAN GIAI N, MENG J. Phys Lett B, 2006, 640:150.
    [53] SUN B Y, LONG W H, MENG J,et al. Phys Rev C, 2008, 78:065805.
    [54] ZHAO Q, SUN B Y, LONG W H. J. Phys. G:Nucl. Part. Phys., 2015, 42:095101.
    [55] LIU Z W, QIAN Z, XING R Y, et al. Phys Rev C, 2018, 97:025801.
    [56] LONG W H, SAGAWA H, MENG J, et al. Phys Lett B, 2006, 639:242.
    [57] LIANG H Z, LONG W H, MENG J, et al. Eur Phys J A, 2010, 44:119.
    [58] LIANG H Z, MENG J, ZHOU S G. Phys Rep, 2015, 570:1.
    [59] LONG W H, RING P, MENG J, et al. Phys Rev C, 2010, 81:031302.
    [60] LI J J, LONG W H, SONG J L, et al. Phys Rev C, 2016, 93:054312.
    [61] EBRAN J P, KHAN E, PEÑA ARTEAGA D, et al. Phys Rev C, 2011, 83:064323.
    [62] LI J J, LONG W H, MARGUERON J, et al. Phys Lett B, 2014, 732:169.
    [63] LI J J, MARGUERON J, LONG W H, et al. Phys Lett B, 2016, 753:97.
    [64] LI J J, LONG W H, MARGUERON J, et al. Phys Lett B, 2018, 788:192.
    [65] LIANG H Z, GIAI N V, MENG J. Phys Rev C, 2009, 79:064306.
    [66] GU H Q, LIANG H Z, LONG W H, et al. Phys Rev C, 2013,87:041301(R).
    [67] LIANG H Z, ZHAO P W, RING P, et al. Phys Rev C, 2012, 86:021302(R).
    [68] NIU Z M, NIU Y F, LIANG H Z, et al. Phys Rev C, 2017, 95:044301.
    [69] NIU Z M, NIU Y F, LIANG H Z, et al. Phys Lett B, 2013, 723:172.
    [70] LONG W H, SUN B Y, HAGINO K, et al. Phys Rev C, 2012, 85:025806.
    [71] LI J J, SEDRAKIAN A, WEBER F. Phys Lett B, 2018, 783:234.
    [72] LI J J, LONG W H, SEDRAKIAN A. Eur Phys J A, 2018, 54:133.
    [73] FOLDY L L, WOUTHUYSEN S A. Phys Rev, 1950, 78:29.
    [74] CARLSON J, GANDOLFI S, PEDERIVA F, et al. Rev Mod Phys, 2015, 87:1067.
    [75] RAMOS A, POLLS A, DICKHOFF W. Nucl Phys A, 1989, 503:1.
    [76] ZHENG D C, BARRETT B R, JAQUA L, et al. Phys Rev C, 1993, 48:1083.
    [77] MÜLLER H M, KOONIN S E, SEKI R, et al. Phys Rev C, 2000, 61:044320.
    [78] TSUKIYAMA K, BOGNER S K, SCHWENK A. Phys Rev Lett, 2011, 106:222502.
    [79] LIU L, OTSUKA T, SHIMIZU N, et al. Phys Rev C, 2012, 86:014302.
    [80] BRUECKNER K, LEVINSON C, MAHMOUD H. Phys Rev, 1954, 95:217.
    [81] DAY B D. Rev Mod Phys, 1967, 39:719.
    [82] COESTER F, COHEN S, DAY B D, et al. Phys Rev C, 1970, 1:769.
    [83] BROWN G E, JACKSON A, KUO T T S. Nucl Phys A, 1969, 133:481.
    [84] FUJITA J, MIYAZAWA H. Prog Theor Phys, 1957, 17:360.
    [85] ANASTASIO M, CELENZA L, PONG W, et al. Phys Rep, 1983, 100:327.
    [86] TER HAAR B, MALFLIET R. Phys Rep, 1987, 149:207.
    [87] MALFLIET R. Prog Part Nucl Phys, 1988, 21:207.
    [88] MACHLEIDT R. Adv Nucl Phys, 1989, 19:189.
    [89] BROCKMANN R, MACHLEIDT R. Phys Rev C, 1990, 42:1965.
    [90] BROWN G E, WEISE W, BAYM G, et al. Comments Nucl Part Phys, 1987, 17:39.
    [91] ZUO W, LEJEUNE A, LOMBARDO U, et al. Nucl Phys A, 2002, 706:418.
    [92] MÜTHER H, MACHLEIDT R, BROCKMANN R. Phys Lett B, 1988, 202:483.
    [93] MÜTHER H, MACHLEIDT R, BROCKMANN R. Phys Rev C, 1990, 42:1981.
    [94] BROCKMANN R, TOKI H. Phys Rev Lett, 1992, 68:3408.
    [95] LIANG H Z. Proc. Sci., 2016, INPC2016:361.
    [96] BETHE H A, GOLDSTONE J. Proc R Soc London Ser A, 1957, 238:551.
    [97] HOHENBERG P, KOHN W. Phys Rev, 1964, 136:B864.
    [98] KUTZELNIGG W. J Mol Struct, 2006, 768:163.
    [99] DRUT J E, FURNSTAHL R J, PLATTER L. Prog Part Nucl Phys, 2010, 64:120.
    [100] LIANG H Z, NIU Y F, HATSUDA T. Phys Lett B, 2018, 779:436.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1647) PDF downloads(172) Cited by()

Proportional views

Effects of Tensor Force in Covariant Density Functional Theory

doi: 10.11804/NuclPhysRev.35.04.390
Funds:  Japan Society for the Promotion of Science (18K13549); National Natural Science Foundation of China-Japan Society for the Promotion of Science Bilateral Program (11711540016)

Abstract: Tensor force is one of the most important components of the nucleon-nucleon interaction. It plays a critical role in understanding the shell evolution in exotic nuclei. However, there are still several puzzles concerning the tensor force and its effects in the nuclear medium. In this paper, we mainly focus on the studies of tensor force in the effective interactions and its effects in finite nuclear systems within the scheme of nuclear density functional theory. In particular, we highlight the recent developments, including the quantitative analysis of tensor effects in the relativistic Hartree-Fock theory by taking the evolution of proton magic shells in the isotopic chains as an example, and the "meta-data" of tensor effects provided by the ab initio relativistic Brueckner-Hartree-Fock theory by taking the evolution of spin-orbit splitting in the single-particle spectra of neutron drops as an example. Perspectives are focused on the possible strategies for the future developments of nuclear density functional theory.

LIANG Haozhao, SHEN Shihang, WANG Zhiheng. Effects of Tensor Force in Covariant Density Functional Theory[J]. Nuclear Physics Review, 2018, 35(4): 390-400. doi: 10.11804/NuclPhysRev.35.04.390
Citation: LIANG Haozhao, SHEN Shihang, WANG Zhiheng. Effects of Tensor Force in Covariant Density Functional Theory[J]. Nuclear Physics Review, 2018, 35(4): 390-400. doi: 10.11804/NuclPhysRev.35.04.390
Reference (100)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return